Spaces:
Sleeping
Sleeping
File size: 4,102 Bytes
d1dbbbf 5223bf3 d1dbbbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
# 4/28/2024
# This version added saving chat history to a log file
# Updated the GPT model to gpt-4
# Add timestamp and ip address
# 2/23/2024
# This version uses different method in llama index to define llm model
# Removed deprecated classes and replaced with newest dependencies
import openai
import json
import gradio as gr
from openai import OpenAI
#from langchain_community.chat_models import ChatOpenAI
from langchain_community.chat_models.openai import ChatOpenAI
# rebuild storage context and load knowledge index
# from llama_index import StorageContext, load_index_from_storage, LLMPredictor, ServiceContext
from llama_index import StorageContext, load_index_from_storage, ServiceContext
from llama_index.llms import OpenAI
from datetime import datetime;
import socket;
storage_context = StorageContext.from_defaults(persist_dir='./')
# gpt-3.5_turbo is the current default model
llm_predictor = OpenAI(temperature=0.5, model_name="gpt-4")
service_context = ServiceContext.from_defaults(llm=llm_predictor)
index = load_index_from_storage(storage_context, service_context=service_context)
class Chatbot:
def __init__(self, api_key, index):
self.index = index
openai.api_key = api_key
self.chat_history = []
self.history_file = f"chat_log.json"
def generate_response(self, user_input):
query_engine = index.as_query_engine()
response = query_engine.query(user_input)
# generate response
message = {"role": "assistant", "content": response.response}
return message
def load_chat_history(self):
try:
with open(self.history_file, 'r') as f:
self.chat_history = json.load(f)
except FileNotFoundError:
pass
def append_chat_history(self, user_input, output):
# append chat history
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(dt)
hostname = socket.gethostname()
ip = socket.gethostbyname(hostname)
print(ip)
#self.chat_history.append({"role": "datetime", "content": dt})
#self.chat_history.append({"role": "IP", "content": ip})
#self.chat_history.append({"role": "user", "content": user_input})
#self.chat_history.append({"role": "assistant", "content": output})
# save the data in dictionary format
dictionary = {
"datetime": dt,
"ip": ip,
"user": user_input,
"assistant": output
}
self.chat_history.append(dictionary)
def save_chat_history(self):
with open(self.history_file, 'w') as f:
json.dump(self.chat_history, f)
def create_bot(user_input):
bot = Chatbot(os.getenv("OPENAI_API_KEY"), index=index)
bot.load_chat_history();
if user_input:
# use moderations endpoint to check input
client = openai.OpenAI()
response_mod = client.moderations.create(input=user_input)
response_dict = response_mod.model_dump()
flagged = response_dict['results'][0]['flagged']
#print("Flagged:", flagged)
if not flagged:
response_bot = bot.generate_response(user_input)
output = response_bot['content']
else:
output = "Invalid request."
bot.append_chat_history(user_input, output)
bot.save_chat_history()
return output
inputs = gr.inputs.Textbox(lines=7, label="Ask questions related to the course. For example, when is the due date for Excel Module 9, what is the assignment late policy, how to use NPV function in Excel, etc.")
outputs = gr.outputs.Textbox(label="Response")
gr.Interface(fn=create_bot, inputs=inputs, outputs=outputs, title="Virtual TA",
description="This is a prototype of learning assistant designed for MIS 320 online section (Version 2.0). Powered by ChatGPT.\nNote: ChatGPT can make mistakes. Consider checking important information.",
theme="compact").launch(share=True)
|