File size: 5,079 Bytes
b91f436
27ac14f
b91f436
5242e1e
 
 
 
 
 
 
252481a
 
 
 
 
 
5242e1e
 
 
 
 
 
 
 
1c57d7d
5242e1e
 
 
252481a
5242e1e
 
 
b91f436
84b8831
5d0c781
b91f436
262860b
5242e1e
 
 
252481a
5242e1e
 
 
 
 
 
 
 
 
5d0c781
b91f436
252481a
 
 
 
b91f436
252481a
 
 
 
 
 
b91f436
5242e1e
27ac14f
5242e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91f436
5242e1e
 
b91f436
5242e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91f436
 
 
d0c4f33
5242e1e
 
 
377634a
5242e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377634a
 
5242e1e
 
 
 
 
 
 
39c5b57
5242e1e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# 4/29/2024

# This version added saving chat history to a log file (need persist data from a space to a dataset)
# Updated the GPT model to gpt-4
# Add timestamp and ip address

# 2/23/2024
# This version uses different method in llama index to define llm model
# Removed deprecated classes and replaced with newest dependencies

# Start by setting token and debug mode before starting schedulers
import os
from huggingface_hub import logging, login
login(token=os.environ.get("HF_TOKEN"), write_permission=True)
logging.set_verbosity_debug()

import openai
import json
import gradio as gr
from openai import OpenAI

# rebuild storage context and load knowledge index
# from llama_index import StorageContext, load_index_from_storage, LLMPredictor, ServiceContext
from llama_index.core import StorageContext
from llama_index.core import load_index_from_storage
from llama_index.llms.openai import OpenAI
#from llama_index.core import Settings

# add datetime and ip to the log file
from datetime import datetime;
import socket;

# access data folder of persistent storage
import uuid
from pathlib import Path
from huggingface_hub import CommitScheduler

# deprecated
storage_context = StorageContext.from_defaults(persist_dir='./')
# gpt-3.5_turbo is the current default model
llm_predictor = OpenAI(temperature=0.5, model="gpt-3.5_turbo")
#service_context = ServiceContext.from_defaults(llm=llm_predictor)
#index = load_index_from_storage(storage_context, service_context=service_context)
index = load_index_from_storage(storage_context)

class Chatbot:
    def __init__(self, api_key, index):
        self.index = index
        openai.api_key = api_key
        self.chat_history = []

        # access chat log file in data folder (persistent storage)
        dataset_dir = Path("logs/")
        dataset_dir.mkdir(parents=True, exist_ok=True)
        self.history_file = dataset_dir / f"chat_log_{uuid.uuid4()}.json"
        #self.history_file = f"chat_log_{uuid.uuid4()}.json"

        scheduler = CommitScheduler(
            repo_id="history_data",
            repo_type="dataset",
            folder_path=dataset_dir,
            path_in_repo="data",
        )
        
    def generate_response(self, user_input):
        query_engine = index.as_query_engine(llm=llm_predictor)
        response = query_engine.query(user_input)
        
        # generate response
        message = {"role": "assistant", "content": response.response}
        
        return message
    
    def load_chat_history(self):
        try:
            with open(self.history_file, 'r') as f:
                self.chat_history = json.load(f)
        except FileNotFoundError:
            pass
    
    def append_chat_history(self, user_input, output):
            # append chat history
        dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        #print(dt)
        hostname = socket.gethostname()
        ip = socket.gethostbyname(hostname)
        #print(ip)
        
        #self.chat_history.append({"role": "datetime", "content": dt})
        #self.chat_history.append({"role": "IP", "content": ip})
        #self.chat_history.append({"role": "user", "content": user_input})
        #self.chat_history.append({"role": "assistant", "content": output})
        
        # save the data in dictionary format
        dictionary = {
            "datetime": dt,
            "ip": ip,
            "user": user_input,
            "assistant": output
        }
        self.chat_history.append(dictionary)

    def save_chat_history(self):
        with scheduler.lock:
            with open(self.history_file, 'w') as f:
                json.dump(self.chat_history, f)
                f.write("\n")

def create_bot(user_input):
    bot = Chatbot(os.getenv("OPENAI_API_KEY"), index=index)
    #bot.load_chat_history();
    
    if user_input:
         # use moderations endpoint to check input
        client = openai.OpenAI()
        response_mod = client.moderations.create(input=user_input)
        response_dict = response_mod.model_dump()
        flagged = response_dict['results'][0]['flagged']
        #print("Flagged:", flagged)
    
        if not flagged:
            response_bot = bot.generate_response(user_input)
            output = response_bot['content']
        else:
             output = "Invalid request."
        
        #bot.append_chat_history(user_input, output)
        #bot.save_chat_history()
        
        return output

inputs = gr.components.Textbox(lines=7, label="Ask questions related to the course. For example, when is the due date for Excel Module 9, what is the assignment late policy, how to use NPV function in Excel, etc.")
outputs = gr.components.Textbox(label="Response")

gr.Interface(fn=create_bot, inputs=inputs, outputs=outputs, title="Virtual TA",
             description="This is a prototype of learning assistant designed for MIS 320 online section (Version 2.0). Powered by ChatGPT-4.\nNote: ChatGPT can make mistakes. Consider checking important information.",
             theme="compact").launch(share=True)