Spaces:
Sleeping
Sleeping
File size: 5,079 Bytes
b91f436 27ac14f b91f436 5242e1e 252481a 5242e1e 1c57d7d 5242e1e 252481a 5242e1e b91f436 84b8831 5d0c781 b91f436 262860b 5242e1e 252481a 5242e1e 5d0c781 b91f436 252481a b91f436 252481a b91f436 5242e1e 27ac14f 5242e1e b91f436 5242e1e b91f436 5242e1e b91f436 d0c4f33 5242e1e 377634a 5242e1e 377634a 5242e1e 39c5b57 5242e1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# 4/29/2024
# This version added saving chat history to a log file (need persist data from a space to a dataset)
# Updated the GPT model to gpt-4
# Add timestamp and ip address
# 2/23/2024
# This version uses different method in llama index to define llm model
# Removed deprecated classes and replaced with newest dependencies
# Start by setting token and debug mode before starting schedulers
import os
from huggingface_hub import logging, login
login(token=os.environ.get("HF_TOKEN"), write_permission=True)
logging.set_verbosity_debug()
import openai
import json
import gradio as gr
from openai import OpenAI
# rebuild storage context and load knowledge index
# from llama_index import StorageContext, load_index_from_storage, LLMPredictor, ServiceContext
from llama_index.core import StorageContext
from llama_index.core import load_index_from_storage
from llama_index.llms.openai import OpenAI
#from llama_index.core import Settings
# add datetime and ip to the log file
from datetime import datetime;
import socket;
# access data folder of persistent storage
import uuid
from pathlib import Path
from huggingface_hub import CommitScheduler
# deprecated
storage_context = StorageContext.from_defaults(persist_dir='./')
# gpt-3.5_turbo is the current default model
llm_predictor = OpenAI(temperature=0.5, model="gpt-3.5_turbo")
#service_context = ServiceContext.from_defaults(llm=llm_predictor)
#index = load_index_from_storage(storage_context, service_context=service_context)
index = load_index_from_storage(storage_context)
class Chatbot:
def __init__(self, api_key, index):
self.index = index
openai.api_key = api_key
self.chat_history = []
# access chat log file in data folder (persistent storage)
dataset_dir = Path("logs/")
dataset_dir.mkdir(parents=True, exist_ok=True)
self.history_file = dataset_dir / f"chat_log_{uuid.uuid4()}.json"
#self.history_file = f"chat_log_{uuid.uuid4()}.json"
scheduler = CommitScheduler(
repo_id="history_data",
repo_type="dataset",
folder_path=dataset_dir,
path_in_repo="data",
)
def generate_response(self, user_input):
query_engine = index.as_query_engine(llm=llm_predictor)
response = query_engine.query(user_input)
# generate response
message = {"role": "assistant", "content": response.response}
return message
def load_chat_history(self):
try:
with open(self.history_file, 'r') as f:
self.chat_history = json.load(f)
except FileNotFoundError:
pass
def append_chat_history(self, user_input, output):
# append chat history
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
#print(dt)
hostname = socket.gethostname()
ip = socket.gethostbyname(hostname)
#print(ip)
#self.chat_history.append({"role": "datetime", "content": dt})
#self.chat_history.append({"role": "IP", "content": ip})
#self.chat_history.append({"role": "user", "content": user_input})
#self.chat_history.append({"role": "assistant", "content": output})
# save the data in dictionary format
dictionary = {
"datetime": dt,
"ip": ip,
"user": user_input,
"assistant": output
}
self.chat_history.append(dictionary)
def save_chat_history(self):
with scheduler.lock:
with open(self.history_file, 'w') as f:
json.dump(self.chat_history, f)
f.write("\n")
def create_bot(user_input):
bot = Chatbot(os.getenv("OPENAI_API_KEY"), index=index)
#bot.load_chat_history();
if user_input:
# use moderations endpoint to check input
client = openai.OpenAI()
response_mod = client.moderations.create(input=user_input)
response_dict = response_mod.model_dump()
flagged = response_dict['results'][0]['flagged']
#print("Flagged:", flagged)
if not flagged:
response_bot = bot.generate_response(user_input)
output = response_bot['content']
else:
output = "Invalid request."
#bot.append_chat_history(user_input, output)
#bot.save_chat_history()
return output
inputs = gr.components.Textbox(lines=7, label="Ask questions related to the course. For example, when is the due date for Excel Module 9, what is the assignment late policy, how to use NPV function in Excel, etc.")
outputs = gr.components.Textbox(label="Response")
gr.Interface(fn=create_bot, inputs=inputs, outputs=outputs, title="Virtual TA",
description="This is a prototype of learning assistant designed for MIS 320 online section (Version 2.0). Powered by ChatGPT-4.\nNote: ChatGPT can make mistakes. Consider checking important information.",
theme="compact").launch(share=True)
|