Spaces:
Running
Running
File size: 24,117 Bytes
d2fa653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import matplotlib
matplotlib.use('Agg')
from utils import audio
import matplotlib.pyplot as plt
from data_gen.tts.data_gen_utils import get_pitch
from tasks.tts.fs2_utils import FastSpeechDataset
from utils.cwt import cwt2f0
from utils.pl_utils import data_loader
import os
from multiprocessing.pool import Pool
from tqdm import tqdm
from modules.fastspeech.tts_modules import mel2ph_to_dur
from utils.hparams import hparams
from utils.plot import spec_to_figure, dur_to_figure, f0_to_figure
from utils.pitch_utils import denorm_f0
from modules.fastspeech.fs2 import FastSpeech2
from tasks.tts.tts import TtsTask
import torch
import torch.optim
import torch.utils.data
import torch.nn.functional as F
import utils
import torch.distributions
import numpy as np
from modules.commons.ssim import ssim
class FastSpeech2Task(TtsTask):
def __init__(self):
super(FastSpeech2Task, self).__init__()
self.dataset_cls = FastSpeechDataset
self.mse_loss_fn = torch.nn.MSELoss()
mel_losses = hparams['mel_loss'].split("|")
self.loss_and_lambda = {}
for i, l in enumerate(mel_losses):
if l == '':
continue
if ':' in l:
l, lbd = l.split(":")
lbd = float(lbd)
else:
lbd = 1.0
self.loss_and_lambda[l] = lbd
print("| Mel losses:", self.loss_and_lambda)
self.sil_ph = self.phone_encoder.sil_phonemes()
@data_loader
def train_dataloader(self):
train_dataset = self.dataset_cls(hparams['train_set_name'], shuffle=True)
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences,
endless=hparams['endless_ds'])
@data_loader
def val_dataloader(self):
valid_dataset = self.dataset_cls(hparams['valid_set_name'], shuffle=False)
return self.build_dataloader(valid_dataset, False, self.max_eval_tokens, self.max_eval_sentences)
@data_loader
def test_dataloader(self):
test_dataset = self.dataset_cls(hparams['test_set_name'], shuffle=False)
return self.build_dataloader(test_dataset, False, self.max_eval_tokens,
self.max_eval_sentences, batch_by_size=False)
def build_tts_model(self):
self.model = FastSpeech2(self.phone_encoder)
def build_model(self):
self.build_tts_model()
if hparams['load_ckpt'] != '':
self.load_ckpt(hparams['load_ckpt'], strict=True)
utils.print_arch(self.model)
return self.model
def _training_step(self, sample, batch_idx, _):
loss_output = self.run_model(self.model, sample)
total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad])
loss_output['batch_size'] = sample['txt_tokens'].size()[0]
return total_loss, loss_output
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
mel_out = self.model.out2mel(model_out['mel_out'])
outputs = utils.tensors_to_scalars(outputs)
# if sample['mels'].shape[0] == 1:
# self.add_laplace_var(mel_out, sample['mels'], outputs)
if batch_idx < hparams['num_valid_plots']:
self.plot_mel(batch_idx, sample['mels'], mel_out)
self.plot_dur(batch_idx, sample, model_out)
if hparams['use_pitch_embed']:
self.plot_pitch(batch_idx, sample, model_out)
return outputs
def _validation_end(self, outputs):
all_losses_meter = {
'total_loss': utils.AvgrageMeter(),
}
for output in outputs:
n = output['nsamples']
for k, v in output['losses'].items():
if k not in all_losses_meter:
all_losses_meter[k] = utils.AvgrageMeter()
all_losses_meter[k].update(v, n)
all_losses_meter['total_loss'].update(output['total_loss'], n)
return {k: round(v.avg, 4) for k, v in all_losses_meter.items()}
def run_model(self, model, sample, return_output=False):
txt_tokens = sample['txt_tokens'] # [B, T_t]
target = sample['mels'] # [B, T_s, 80]
mel2ph = sample['mel2ph'] # [B, T_s]
f0 = sample['f0']
uv = sample['uv']
energy = sample['energy']
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
if hparams['pitch_type'] == 'cwt':
cwt_spec = sample[f'cwt_spec']
f0_mean = sample['f0_mean']
f0_std = sample['f0_std']
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph)
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed,
ref_mels=target, f0=f0, uv=uv, energy=energy, infer=False)
losses = {}
self.add_mel_loss(output['mel_out'], target, losses)
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses)
if hparams['use_pitch_embed']:
self.add_pitch_loss(output, sample, losses)
if hparams['use_energy_embed']:
self.add_energy_loss(output['energy_pred'], energy, losses)
if not return_output:
return losses
else:
return losses, output
############
# losses
############
def add_mel_loss(self, mel_out, target, losses, postfix='', mel_mix_loss=None):
if mel_mix_loss is None:
for loss_name, lbd in self.loss_and_lambda.items():
if 'l1' == loss_name:
l = self.l1_loss(mel_out, target)
elif 'mse' == loss_name:
raise NotImplementedError
elif 'ssim' == loss_name:
l = self.ssim_loss(mel_out, target)
elif 'gdl' == loss_name:
raise NotImplementedError
losses[f'{loss_name}{postfix}'] = l * lbd
else:
raise NotImplementedError
def l1_loss(self, decoder_output, target):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
l1_loss = F.l1_loss(decoder_output, target, reduction='none')
weights = self.weights_nonzero_speech(target)
l1_loss = (l1_loss * weights).sum() / weights.sum()
return l1_loss
def ssim_loss(self, decoder_output, target, bias=6.0):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
assert decoder_output.shape == target.shape
weights = self.weights_nonzero_speech(target)
decoder_output = decoder_output[:, None] + bias
target = target[:, None] + bias
ssim_loss = 1 - ssim(decoder_output, target, size_average=False)
ssim_loss = (ssim_loss * weights).sum() / weights.sum()
return ssim_loss
def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, losses=None):
"""
:param dur_pred: [B, T], float, log scale
:param mel2ph: [B, T]
:param txt_tokens: [B, T]
:param losses:
:return:
"""
B, T = txt_tokens.shape
nonpadding = (txt_tokens != 0).float()
dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding
is_sil = torch.zeros_like(txt_tokens).bool()
for p in self.sil_ph:
is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0])
is_sil = is_sil.float() # [B, T_txt]
# phone duration loss
if hparams['dur_loss'] == 'mse':
losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none')
losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum()
dur_pred = (dur_pred.exp() - 1).clamp(min=0)
elif hparams['dur_loss'] == 'mog':
return NotImplementedError
elif hparams['dur_loss'] == 'crf':
losses['pdur'] = -self.model.dur_predictor.crf(
dur_pred, dur_gt.long().clamp(min=0, max=31), mask=nonpadding > 0, reduction='mean')
losses['pdur'] = losses['pdur'] * hparams['lambda_ph_dur']
# use linear scale for sent and word duration
if hparams['lambda_word_dur'] > 0:
word_id = (is_sil.cumsum(-1) * (1 - is_sil)).long()
word_dur_p = dur_pred.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_pred)[:, 1:]
word_dur_g = dur_gt.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_gt)[:, 1:]
wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none')
word_nonpadding = (word_dur_g > 0).float()
wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum()
losses['wdur'] = wdur_loss * hparams['lambda_word_dur']
if hparams['lambda_sent_dur'] > 0:
sent_dur_p = dur_pred.sum(-1)
sent_dur_g = dur_gt.sum(-1)
sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean')
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']
def add_pitch_loss(self, output, sample, losses):
if hparams['pitch_type'] == 'ph':
nonpadding = (sample['txt_tokens'] != 0).float()
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss
losses['f0'] = (pitch_loss_fn(output['pitch_pred'][:, :, 0], sample['f0'],
reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_f0']
return
mel2ph = sample['mel2ph'] # [B, T_s]
f0 = sample['f0']
uv = sample['uv']
nonpadding = (mel2ph != 0).float()
if hparams['pitch_type'] == 'cwt':
cwt_spec = sample[f'cwt_spec']
f0_mean = sample['f0_mean']
f0_std = sample['f0_std']
cwt_pred = output['cwt'][:, :, :10]
f0_mean_pred = output['f0_mean']
f0_std_pred = output['f0_std']
losses['C'] = self.cwt_loss(cwt_pred, cwt_spec) * hparams['lambda_f0']
if hparams['use_uv']:
assert output['cwt'].shape[-1] == 11
uv_pred = output['cwt'][:, :, -1]
losses['uv'] = (F.binary_cross_entropy_with_logits(uv_pred, uv, reduction='none') * nonpadding) \
.sum() / nonpadding.sum() * hparams['lambda_uv']
losses['f0_mean'] = F.l1_loss(f0_mean_pred, f0_mean) * hparams['lambda_f0']
losses['f0_std'] = F.l1_loss(f0_std_pred, f0_std) * hparams['lambda_f0']
if hparams['cwt_add_f0_loss']:
f0_cwt_ = self.model.cwt2f0_norm(cwt_pred, f0_mean_pred, f0_std_pred, mel2ph)
self.add_f0_loss(f0_cwt_[:, :, None], f0, uv, losses, nonpadding=nonpadding)
elif hparams['pitch_type'] == 'frame':
self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding)
def add_f0_loss(self, p_pred, f0, uv, losses, nonpadding):
assert p_pred[..., 0].shape == f0.shape
if hparams['use_uv']:
assert p_pred[..., 1].shape == uv.shape
losses['uv'] = (F.binary_cross_entropy_with_logits(
p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_uv']
nonpadding = nonpadding * (uv == 0).float()
f0_pred = p_pred[:, :, 0]
if hparams['pitch_loss'] in ['l1', 'l2']:
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss
losses['f0'] = (pitch_loss_fn(f0_pred, f0, reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_f0']
elif hparams['pitch_loss'] == 'ssim':
return NotImplementedError
def cwt_loss(self, cwt_p, cwt_g):
if hparams['cwt_loss'] == 'l1':
return F.l1_loss(cwt_p, cwt_g)
if hparams['cwt_loss'] == 'l2':
return F.mse_loss(cwt_p, cwt_g)
if hparams['cwt_loss'] == 'ssim':
return self.ssim_loss(cwt_p, cwt_g, 20)
def add_energy_loss(self, energy_pred, energy, losses):
nonpadding = (energy != 0).float()
loss = (F.mse_loss(energy_pred, energy, reduction='none') * nonpadding).sum() / nonpadding.sum()
loss = loss * hparams['lambda_energy']
losses['e'] = loss
############
# validation plots
############
def plot_mel(self, batch_idx, spec, spec_out, name=None):
spec_cat = torch.cat([spec, spec_out], -1)
name = f'mel_{batch_idx}' if name is None else name
vmin = hparams['mel_vmin']
vmax = hparams['mel_vmax']
self.logger.experiment.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step)
def plot_dur(self, batch_idx, sample, model_out):
T_txt = sample['txt_tokens'].shape[1]
dur_gt = mel2ph_to_dur(sample['mel2ph'], T_txt)[0]
dur_pred = self.model.dur_predictor.out2dur(model_out['dur']).float()
txt = self.phone_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
txt = txt.split(" ")
self.logger.experiment.add_figure(
f'dur_{batch_idx}', dur_to_figure(dur_gt, dur_pred, txt), self.global_step)
def plot_pitch(self, batch_idx, sample, model_out):
f0 = sample['f0']
if hparams['pitch_type'] == 'ph':
mel2ph = sample['mel2ph']
f0 = self.expand_f0_ph(f0, mel2ph)
f0_pred = self.expand_f0_ph(model_out['pitch_pred'][:, :, 0], mel2ph)
self.logger.experiment.add_figure(
f'f0_{batch_idx}', f0_to_figure(f0[0], None, f0_pred[0]), self.global_step)
return
f0 = denorm_f0(f0, sample['uv'], hparams)
if hparams['pitch_type'] == 'cwt':
# cwt
cwt_out = model_out['cwt']
cwt_spec = cwt_out[:, :, :10]
cwt = torch.cat([cwt_spec, sample['cwt_spec']], -1)
self.logger.experiment.add_figure(f'cwt_{batch_idx}', spec_to_figure(cwt[0]), self.global_step)
# f0
f0_pred = cwt2f0(cwt_spec, model_out['f0_mean'], model_out['f0_std'], hparams['cwt_scales'])
if hparams['use_uv']:
assert cwt_out.shape[-1] == 11
uv_pred = cwt_out[:, :, -1] > 0
f0_pred[uv_pred > 0] = 0
f0_cwt = denorm_f0(sample['f0_cwt'], sample['uv'], hparams)
self.logger.experiment.add_figure(
f'f0_{batch_idx}', f0_to_figure(f0[0], f0_cwt[0], f0_pred[0]), self.global_step)
elif hparams['pitch_type'] == 'frame':
# f0
uv_pred = model_out['pitch_pred'][:, :, 1] > 0
pitch_pred = denorm_f0(model_out['pitch_pred'][:, :, 0], uv_pred, hparams)
self.logger.experiment.add_figure(
f'f0_{batch_idx}', f0_to_figure(f0[0], None, pitch_pred[0]), self.global_step)
############
# infer
############
def test_step(self, sample, batch_idx):
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
txt_tokens = sample['txt_tokens']
mel2ph, uv, f0 = None, None, None
ref_mels = None
if hparams['profile_infer']:
pass
else:
if hparams['use_gt_dur']:
mel2ph = sample['mel2ph']
if hparams['use_gt_f0']:
f0 = sample['f0']
uv = sample['uv']
print('Here using gt f0!!')
if hparams.get('use_midi') is not None and hparams['use_midi']:
outputs = self.model(
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True,
pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur'))
else:
outputs = self.model(
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True)
sample['outputs'] = self.model.out2mel(outputs['mel_out'])
sample['mel2ph_pred'] = outputs['mel2ph']
if hparams.get('pe_enable') is not None and hparams['pe_enable']:
sample['f0'] = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel
sample['f0_pred'] = self.pe(sample['outputs'])['f0_denorm_pred'] # pe predict from Pred mel
else:
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams)
sample['f0_pred'] = outputs.get('f0_denorm')
return self.after_infer(sample)
def after_infer(self, predictions):
if self.saving_result_pool is None and not hparams['profile_infer']:
self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16))
self.saving_results_futures = []
predictions = utils.unpack_dict_to_list(predictions)
t = tqdm(predictions)
for num_predictions, prediction in enumerate(t):
for k, v in prediction.items():
if type(v) is torch.Tensor:
prediction[k] = v.cpu().numpy()
item_name = prediction.get('item_name')
text = prediction.get('text').replace(":", "%3A")[:80]
# remove paddings
mel_gt = prediction["mels"]
mel_gt_mask = np.abs(mel_gt).sum(-1) > 0
mel_gt = mel_gt[mel_gt_mask]
mel2ph_gt = prediction.get("mel2ph")
mel2ph_gt = mel2ph_gt[mel_gt_mask] if mel2ph_gt is not None else None
mel_pred = prediction["outputs"]
mel_pred_mask = np.abs(mel_pred).sum(-1) > 0
mel_pred = mel_pred[mel_pred_mask]
mel_gt = np.clip(mel_gt, hparams['mel_vmin'], hparams['mel_vmax'])
mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax'])
mel2ph_pred = prediction.get("mel2ph_pred")
if mel2ph_pred is not None:
if len(mel2ph_pred) > len(mel_pred_mask):
mel2ph_pred = mel2ph_pred[:len(mel_pred_mask)]
mel2ph_pred = mel2ph_pred[mel_pred_mask]
f0_gt = prediction.get("f0")
f0_pred = prediction.get("f0_pred")
if f0_pred is not None:
f0_gt = f0_gt[mel_gt_mask]
if len(f0_pred) > len(mel_pred_mask):
f0_pred = f0_pred[:len(mel_pred_mask)]
f0_pred = f0_pred[mel_pred_mask]
str_phs = None
if self.phone_encoder is not None and 'txt_tokens' in prediction:
str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True)
gen_dir = os.path.join(hparams['work_dir'],
f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
if not hparams['profile_infer']:
os.makedirs(gen_dir, exist_ok=True)
os.makedirs(f'{gen_dir}/wavs', exist_ok=True)
os.makedirs(f'{gen_dir}/plot', exist_ok=True)
os.makedirs(os.path.join(hparams['work_dir'], 'P_mels_npy'), exist_ok=True)
os.makedirs(os.path.join(hparams['work_dir'], 'G_mels_npy'), exist_ok=True)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_pred, mel_pred, 'P', item_name, text, gen_dir, str_phs, mel2ph_pred, f0_gt, f0_pred]))
if mel_gt is not None and hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_gt, mel_gt, 'G', item_name, text, gen_dir, str_phs, mel2ph_gt, f0_gt, f0_pred]))
if hparams['save_f0']:
import matplotlib.pyplot as plt
# f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
f0_pred_ = f0_pred
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
fig = plt.figure()
plt.plot(f0_pred_, label=r'$f0_P$')
plt.plot(f0_gt_, label=r'$f0_G$')
if hparams.get('pe_enable') is not None and hparams['pe_enable']:
# f0_midi = prediction.get("f0_midi")
# f0_midi = f0_midi[mel_gt_mask]
# plt.plot(f0_midi, label=r'$f0_M$')
pass
plt.legend()
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png')
plt.close(fig)
t.set_description(
f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
else:
if 'gen_wav_time' not in self.stats:
self.stats['gen_wav_time'] = 0
self.stats['gen_wav_time'] += len(wav_pred) / hparams['audio_sample_rate']
print('gen_wav_time: ', self.stats['gen_wav_time'])
return {}
@staticmethod
def save_result(wav_out, mel, prefix, item_name, text, gen_dir, str_phs=None, mel2ph=None, gt_f0=None, pred_f0=None):
item_name = item_name.replace('/', '-')
base_fn = f'[{item_name}][{prefix}]'
if text is not None:
base_fn += text
base_fn += ('-' + hparams['exp_name'])
np.save(os.path.join(hparams['work_dir'], f'{prefix}_mels_npy', item_name), mel)
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'],
norm=hparams['out_wav_norm'])
fig = plt.figure(figsize=(14, 10))
spec_vmin = hparams['mel_vmin']
spec_vmax = hparams['mel_vmax']
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax)
fig.colorbar(heatmap)
if hparams.get('pe_enable') is not None and hparams['pe_enable']:
gt_f0 = (gt_f0 - 100) / (800 - 100) * 80 * (gt_f0 > 0)
pred_f0 = (pred_f0 - 100) / (800 - 100) * 80 * (pred_f0 > 0)
plt.plot(pred_f0, c='white', linewidth=1, alpha=0.6)
plt.plot(gt_f0, c='red', linewidth=1, alpha=0.6)
else:
f0, _ = get_pitch(wav_out, mel, hparams)
f0 = (f0 - 100) / (800 - 100) * 80 * (f0 > 0)
plt.plot(f0, c='white', linewidth=1, alpha=0.6)
if mel2ph is not None and str_phs is not None:
decoded_txt = str_phs.split(" ")
dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy()
dur = [0] + list(np.cumsum(dur))
for i in range(len(dur) - 1):
shift = (i % 20) + 1
plt.text(dur[i], shift, decoded_txt[i])
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black')
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black',
alpha=1, linewidth=1)
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png', dpi=1000)
plt.close(fig)
##############
# utils
##############
@staticmethod
def expand_f0_ph(f0, mel2ph):
f0 = denorm_f0(f0, None, hparams)
f0 = F.pad(f0, [1, 0])
f0 = torch.gather(f0, 1, mel2ph) # [B, T_mel]
return f0
if __name__ == '__main__':
FastSpeech2Task.start()
|