File size: 24,117 Bytes
d2fa653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import matplotlib

matplotlib.use('Agg')

from utils import audio
import matplotlib.pyplot as plt
from data_gen.tts.data_gen_utils import get_pitch
from tasks.tts.fs2_utils import FastSpeechDataset
from utils.cwt import cwt2f0
from utils.pl_utils import data_loader
import os
from multiprocessing.pool import Pool
from tqdm import tqdm
from modules.fastspeech.tts_modules import mel2ph_to_dur
from utils.hparams import hparams
from utils.plot import spec_to_figure, dur_to_figure, f0_to_figure
from utils.pitch_utils import denorm_f0
from modules.fastspeech.fs2 import FastSpeech2
from tasks.tts.tts import TtsTask
import torch
import torch.optim
import torch.utils.data
import torch.nn.functional as F
import utils
import torch.distributions
import numpy as np
from modules.commons.ssim import ssim

class FastSpeech2Task(TtsTask):
    def __init__(self):
        super(FastSpeech2Task, self).__init__()
        self.dataset_cls = FastSpeechDataset
        self.mse_loss_fn = torch.nn.MSELoss()
        mel_losses = hparams['mel_loss'].split("|")
        self.loss_and_lambda = {}
        for i, l in enumerate(mel_losses):
            if l == '':
                continue
            if ':' in l:
                l, lbd = l.split(":")
                lbd = float(lbd)
            else:
                lbd = 1.0
            self.loss_and_lambda[l] = lbd
        print("| Mel losses:", self.loss_and_lambda)
        self.sil_ph = self.phone_encoder.sil_phonemes()

    @data_loader
    def train_dataloader(self):
        train_dataset = self.dataset_cls(hparams['train_set_name'], shuffle=True)
        return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences,
                                     endless=hparams['endless_ds'])

    @data_loader
    def val_dataloader(self):
        valid_dataset = self.dataset_cls(hparams['valid_set_name'], shuffle=False)
        return self.build_dataloader(valid_dataset, False, self.max_eval_tokens, self.max_eval_sentences)

    @data_loader
    def test_dataloader(self):
        test_dataset = self.dataset_cls(hparams['test_set_name'], shuffle=False)
        return self.build_dataloader(test_dataset, False, self.max_eval_tokens,
                                     self.max_eval_sentences, batch_by_size=False)

    def build_tts_model(self):
        self.model = FastSpeech2(self.phone_encoder)

    def build_model(self):
        self.build_tts_model()
        if hparams['load_ckpt'] != '':
            self.load_ckpt(hparams['load_ckpt'], strict=True)
        utils.print_arch(self.model)
        return self.model

    def _training_step(self, sample, batch_idx, _):
        loss_output = self.run_model(self.model, sample)
        total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad])
        loss_output['batch_size'] = sample['txt_tokens'].size()[0]
        return total_loss, loss_output

    def validation_step(self, sample, batch_idx):
        outputs = {}
        outputs['losses'] = {}
        outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True)
        outputs['total_loss'] = sum(outputs['losses'].values())
        outputs['nsamples'] = sample['nsamples']
        mel_out = self.model.out2mel(model_out['mel_out'])
        outputs = utils.tensors_to_scalars(outputs)
        # if sample['mels'].shape[0] == 1:
        #     self.add_laplace_var(mel_out, sample['mels'], outputs)
        if batch_idx < hparams['num_valid_plots']:
            self.plot_mel(batch_idx, sample['mels'], mel_out)
            self.plot_dur(batch_idx, sample, model_out)
            if hparams['use_pitch_embed']:
                self.plot_pitch(batch_idx, sample, model_out)
        return outputs

    def _validation_end(self, outputs):
        all_losses_meter = {
            'total_loss': utils.AvgrageMeter(),
        }
        for output in outputs:
            n = output['nsamples']
            for k, v in output['losses'].items():
                if k not in all_losses_meter:
                    all_losses_meter[k] = utils.AvgrageMeter()
                all_losses_meter[k].update(v, n)
            all_losses_meter['total_loss'].update(output['total_loss'], n)
        return {k: round(v.avg, 4) for k, v in all_losses_meter.items()}

    def run_model(self, model, sample, return_output=False):
        txt_tokens = sample['txt_tokens']  # [B, T_t]
        target = sample['mels']  # [B, T_s, 80]
        mel2ph = sample['mel2ph']  # [B, T_s]
        f0 = sample['f0']
        uv = sample['uv']
        energy = sample['energy']
        spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
        if hparams['pitch_type'] == 'cwt':
            cwt_spec = sample[f'cwt_spec']
            f0_mean = sample['f0_mean']
            f0_std = sample['f0_std']
            sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph)

        output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed,
                       ref_mels=target, f0=f0, uv=uv, energy=energy, infer=False)

        losses = {}
        self.add_mel_loss(output['mel_out'], target, losses)
        self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses)
        if hparams['use_pitch_embed']:
            self.add_pitch_loss(output, sample, losses)
        if hparams['use_energy_embed']:
            self.add_energy_loss(output['energy_pred'], energy, losses)
        if not return_output:
            return losses
        else:
            return losses, output

    ############
    # losses
    ############
    def add_mel_loss(self, mel_out, target, losses, postfix='', mel_mix_loss=None):
        if mel_mix_loss is None:
            for loss_name, lbd in self.loss_and_lambda.items():
                if 'l1' == loss_name:
                    l = self.l1_loss(mel_out, target)
                elif 'mse' == loss_name:
                    raise NotImplementedError
                elif 'ssim' == loss_name:
                    l = self.ssim_loss(mel_out, target)
                elif 'gdl' == loss_name:
                    raise NotImplementedError
                losses[f'{loss_name}{postfix}'] = l * lbd
        else:
            raise NotImplementedError

    def l1_loss(self, decoder_output, target):
        # decoder_output : B x T x n_mel
        # target : B x T x n_mel
        l1_loss = F.l1_loss(decoder_output, target, reduction='none')
        weights = self.weights_nonzero_speech(target)
        l1_loss = (l1_loss * weights).sum() / weights.sum()
        return l1_loss

    def ssim_loss(self, decoder_output, target, bias=6.0):
        # decoder_output : B x T x n_mel
        # target : B x T x n_mel
        assert decoder_output.shape == target.shape
        weights = self.weights_nonzero_speech(target)
        decoder_output = decoder_output[:, None] + bias
        target = target[:, None] + bias
        ssim_loss = 1 - ssim(decoder_output, target, size_average=False)
        ssim_loss = (ssim_loss * weights).sum() / weights.sum()
        return ssim_loss

    def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, losses=None):
        """

        :param dur_pred: [B, T], float, log scale
        :param mel2ph: [B, T]
        :param txt_tokens: [B, T]
        :param losses:
        :return:
        """
        B, T = txt_tokens.shape
        nonpadding = (txt_tokens != 0).float()
        dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding
        is_sil = torch.zeros_like(txt_tokens).bool()
        for p in self.sil_ph:
            is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0])
        is_sil = is_sil.float()  # [B, T_txt]

        # phone duration loss
        if hparams['dur_loss'] == 'mse':
            losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none')
            losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum()
            dur_pred = (dur_pred.exp() - 1).clamp(min=0)
        elif hparams['dur_loss'] == 'mog':
            return NotImplementedError
        elif hparams['dur_loss'] == 'crf':
            losses['pdur'] = -self.model.dur_predictor.crf(
                dur_pred, dur_gt.long().clamp(min=0, max=31), mask=nonpadding > 0, reduction='mean')
        losses['pdur'] = losses['pdur'] * hparams['lambda_ph_dur']

        # use linear scale for sent and word duration
        if hparams['lambda_word_dur'] > 0:
            word_id = (is_sil.cumsum(-1) * (1 - is_sil)).long()
            word_dur_p = dur_pred.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_pred)[:, 1:]
            word_dur_g = dur_gt.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_gt)[:, 1:]
            wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none')
            word_nonpadding = (word_dur_g > 0).float()
            wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum()
            losses['wdur'] = wdur_loss * hparams['lambda_word_dur']
        if hparams['lambda_sent_dur'] > 0:
            sent_dur_p = dur_pred.sum(-1)
            sent_dur_g = dur_gt.sum(-1)
            sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean')
            losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']

    def add_pitch_loss(self, output, sample, losses):
        if hparams['pitch_type'] == 'ph':
            nonpadding = (sample['txt_tokens'] != 0).float()
            pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss
            losses['f0'] = (pitch_loss_fn(output['pitch_pred'][:, :, 0], sample['f0'],
                                          reduction='none') * nonpadding).sum() \
                           / nonpadding.sum() * hparams['lambda_f0']
            return
        mel2ph = sample['mel2ph']  # [B, T_s]
        f0 = sample['f0']
        uv = sample['uv']
        nonpadding = (mel2ph != 0).float()
        if hparams['pitch_type'] == 'cwt':
            cwt_spec = sample[f'cwt_spec']
            f0_mean = sample['f0_mean']
            f0_std = sample['f0_std']
            cwt_pred = output['cwt'][:, :, :10]
            f0_mean_pred = output['f0_mean']
            f0_std_pred = output['f0_std']
            losses['C'] = self.cwt_loss(cwt_pred, cwt_spec) * hparams['lambda_f0']
            if hparams['use_uv']:
                assert output['cwt'].shape[-1] == 11
                uv_pred = output['cwt'][:, :, -1]
                losses['uv'] = (F.binary_cross_entropy_with_logits(uv_pred, uv, reduction='none') * nonpadding) \
                                   .sum() / nonpadding.sum() * hparams['lambda_uv']
            losses['f0_mean'] = F.l1_loss(f0_mean_pred, f0_mean) * hparams['lambda_f0']
            losses['f0_std'] = F.l1_loss(f0_std_pred, f0_std) * hparams['lambda_f0']
            if hparams['cwt_add_f0_loss']:
                f0_cwt_ = self.model.cwt2f0_norm(cwt_pred, f0_mean_pred, f0_std_pred, mel2ph)
                self.add_f0_loss(f0_cwt_[:, :, None], f0, uv, losses, nonpadding=nonpadding)
        elif hparams['pitch_type'] == 'frame':
            self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding)

    def add_f0_loss(self, p_pred, f0, uv, losses, nonpadding):
        assert p_pred[..., 0].shape == f0.shape
        if hparams['use_uv']:
            assert p_pred[..., 1].shape == uv.shape
            losses['uv'] = (F.binary_cross_entropy_with_logits(
                p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \
                           / nonpadding.sum() * hparams['lambda_uv']
            nonpadding = nonpadding * (uv == 0).float()

        f0_pred = p_pred[:, :, 0]
        if hparams['pitch_loss'] in ['l1', 'l2']:
            pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss
            losses['f0'] = (pitch_loss_fn(f0_pred, f0, reduction='none') * nonpadding).sum() \
                           / nonpadding.sum() * hparams['lambda_f0']
        elif hparams['pitch_loss'] == 'ssim':
            return NotImplementedError

    def cwt_loss(self, cwt_p, cwt_g):
        if hparams['cwt_loss'] == 'l1':
            return F.l1_loss(cwt_p, cwt_g)
        if hparams['cwt_loss'] == 'l2':
            return F.mse_loss(cwt_p, cwt_g)
        if hparams['cwt_loss'] == 'ssim':
            return self.ssim_loss(cwt_p, cwt_g, 20)

    def add_energy_loss(self, energy_pred, energy, losses):
        nonpadding = (energy != 0).float()
        loss = (F.mse_loss(energy_pred, energy, reduction='none') * nonpadding).sum() / nonpadding.sum()
        loss = loss * hparams['lambda_energy']
        losses['e'] = loss


    ############
    # validation plots
    ############
    def plot_mel(self, batch_idx, spec, spec_out, name=None):
        spec_cat = torch.cat([spec, spec_out], -1)
        name = f'mel_{batch_idx}' if name is None else name
        vmin = hparams['mel_vmin']
        vmax = hparams['mel_vmax']
        self.logger.experiment.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step)

    def plot_dur(self, batch_idx, sample, model_out):
        T_txt = sample['txt_tokens'].shape[1]
        dur_gt = mel2ph_to_dur(sample['mel2ph'], T_txt)[0]
        dur_pred = self.model.dur_predictor.out2dur(model_out['dur']).float()
        txt = self.phone_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
        txt = txt.split(" ")
        self.logger.experiment.add_figure(
            f'dur_{batch_idx}', dur_to_figure(dur_gt, dur_pred, txt), self.global_step)

    def plot_pitch(self, batch_idx, sample, model_out):
        f0 = sample['f0']
        if hparams['pitch_type'] == 'ph':
            mel2ph = sample['mel2ph']
            f0 = self.expand_f0_ph(f0, mel2ph)
            f0_pred = self.expand_f0_ph(model_out['pitch_pred'][:, :, 0], mel2ph)
            self.logger.experiment.add_figure(
                f'f0_{batch_idx}', f0_to_figure(f0[0], None, f0_pred[0]), self.global_step)
            return
        f0 = denorm_f0(f0, sample['uv'], hparams)
        if hparams['pitch_type'] == 'cwt':
            # cwt
            cwt_out = model_out['cwt']
            cwt_spec = cwt_out[:, :, :10]
            cwt = torch.cat([cwt_spec, sample['cwt_spec']], -1)
            self.logger.experiment.add_figure(f'cwt_{batch_idx}', spec_to_figure(cwt[0]), self.global_step)
            # f0
            f0_pred = cwt2f0(cwt_spec, model_out['f0_mean'], model_out['f0_std'], hparams['cwt_scales'])
            if hparams['use_uv']:
                assert cwt_out.shape[-1] == 11
                uv_pred = cwt_out[:, :, -1] > 0
                f0_pred[uv_pred > 0] = 0
            f0_cwt = denorm_f0(sample['f0_cwt'], sample['uv'], hparams)
            self.logger.experiment.add_figure(
                f'f0_{batch_idx}', f0_to_figure(f0[0], f0_cwt[0], f0_pred[0]), self.global_step)
        elif hparams['pitch_type'] == 'frame':
            # f0
            uv_pred = model_out['pitch_pred'][:, :, 1] > 0
            pitch_pred = denorm_f0(model_out['pitch_pred'][:, :, 0], uv_pred, hparams)
            self.logger.experiment.add_figure(
                f'f0_{batch_idx}', f0_to_figure(f0[0], None, pitch_pred[0]), self.global_step)

    ############
    # infer
    ############
    def test_step(self, sample, batch_idx):
        spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
        txt_tokens = sample['txt_tokens']
        mel2ph, uv, f0 = None, None, None
        ref_mels = None
        if hparams['profile_infer']:
            pass
        else:
            if hparams['use_gt_dur']:
                mel2ph = sample['mel2ph']
            if hparams['use_gt_f0']:
                f0 = sample['f0']
                uv = sample['uv']
                print('Here using gt f0!!')
            if hparams.get('use_midi') is not None and hparams['use_midi']:
                outputs = self.model(
                    txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True,
                    pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur'))
            else:
                outputs = self.model(
                    txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True)
            sample['outputs'] = self.model.out2mel(outputs['mel_out'])
            sample['mel2ph_pred'] = outputs['mel2ph']
            if hparams.get('pe_enable') is not None and hparams['pe_enable']:
                sample['f0'] = self.pe(sample['mels'])['f0_denorm_pred']  # pe predict from GT mel
                sample['f0_pred'] = self.pe(sample['outputs'])['f0_denorm_pred']  # pe predict from Pred mel
            else:
                sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams)
                sample['f0_pred'] = outputs.get('f0_denorm')

            return self.after_infer(sample)

    def after_infer(self, predictions):
        if self.saving_result_pool is None and not hparams['profile_infer']:
            self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16))
            self.saving_results_futures = []
        predictions = utils.unpack_dict_to_list(predictions)
        t = tqdm(predictions)
        for num_predictions, prediction in enumerate(t):
            for k, v in prediction.items():
                if type(v) is torch.Tensor:
                    prediction[k] = v.cpu().numpy()

            item_name = prediction.get('item_name')
            text = prediction.get('text').replace(":", "%3A")[:80]

            # remove paddings
            mel_gt = prediction["mels"]
            mel_gt_mask = np.abs(mel_gt).sum(-1) > 0
            mel_gt = mel_gt[mel_gt_mask]
            mel2ph_gt = prediction.get("mel2ph")
            mel2ph_gt = mel2ph_gt[mel_gt_mask] if mel2ph_gt is not None else None
            mel_pred = prediction["outputs"]
            mel_pred_mask = np.abs(mel_pred).sum(-1) > 0
            mel_pred = mel_pred[mel_pred_mask]
            mel_gt = np.clip(mel_gt, hparams['mel_vmin'], hparams['mel_vmax'])
            mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax'])

            mel2ph_pred = prediction.get("mel2ph_pred")
            if mel2ph_pred is not None:
                if len(mel2ph_pred) > len(mel_pred_mask):
                    mel2ph_pred = mel2ph_pred[:len(mel_pred_mask)]
                mel2ph_pred = mel2ph_pred[mel_pred_mask]

            f0_gt = prediction.get("f0")
            f0_pred = prediction.get("f0_pred")
            if f0_pred is not None:
                f0_gt = f0_gt[mel_gt_mask]
                if len(f0_pred) > len(mel_pred_mask):
                    f0_pred = f0_pred[:len(mel_pred_mask)]
                f0_pred = f0_pred[mel_pred_mask]

            str_phs = None
            if self.phone_encoder is not None and 'txt_tokens' in prediction:
                str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True)
            gen_dir = os.path.join(hparams['work_dir'],
                                   f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
            wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
            if not hparams['profile_infer']:
                os.makedirs(gen_dir, exist_ok=True)
                os.makedirs(f'{gen_dir}/wavs', exist_ok=True)
                os.makedirs(f'{gen_dir}/plot', exist_ok=True)
                os.makedirs(os.path.join(hparams['work_dir'], 'P_mels_npy'), exist_ok=True)
                os.makedirs(os.path.join(hparams['work_dir'], 'G_mels_npy'), exist_ok=True)
                self.saving_results_futures.append(
                    self.saving_result_pool.apply_async(self.save_result, args=[
                        wav_pred, mel_pred, 'P', item_name, text, gen_dir, str_phs, mel2ph_pred, f0_gt, f0_pred]))

                if mel_gt is not None and hparams['save_gt']:
                    wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
                    self.saving_results_futures.append(
                        self.saving_result_pool.apply_async(self.save_result, args=[
                            wav_gt, mel_gt, 'G', item_name, text, gen_dir, str_phs, mel2ph_gt, f0_gt, f0_pred]))
                    if hparams['save_f0']:
                        import matplotlib.pyplot as plt
                        # f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
                        f0_pred_ = f0_pred
                        f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
                        fig = plt.figure()
                        plt.plot(f0_pred_, label=r'$f0_P$')
                        plt.plot(f0_gt_, label=r'$f0_G$')
                        if hparams.get('pe_enable') is not None and hparams['pe_enable']:
                            # f0_midi = prediction.get("f0_midi")
                            # f0_midi = f0_midi[mel_gt_mask]
                            # plt.plot(f0_midi, label=r'$f0_M$')
                            pass
                        plt.legend()
                        plt.tight_layout()
                        plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png')
                        plt.close(fig)

                t.set_description(
                    f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
            else:
                if 'gen_wav_time' not in self.stats:
                    self.stats['gen_wav_time'] = 0
                self.stats['gen_wav_time'] += len(wav_pred) / hparams['audio_sample_rate']
                print('gen_wav_time: ', self.stats['gen_wav_time'])

        return {}

    @staticmethod
    def save_result(wav_out, mel, prefix, item_name, text, gen_dir, str_phs=None, mel2ph=None, gt_f0=None, pred_f0=None):
        item_name = item_name.replace('/', '-')
        base_fn = f'[{item_name}][{prefix}]'

        if text is not None:
            base_fn += text
        base_fn += ('-' + hparams['exp_name'])
        np.save(os.path.join(hparams['work_dir'], f'{prefix}_mels_npy', item_name), mel)
        audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'],
                       norm=hparams['out_wav_norm'])
        fig = plt.figure(figsize=(14, 10))
        spec_vmin = hparams['mel_vmin']
        spec_vmax = hparams['mel_vmax']
        heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax)
        fig.colorbar(heatmap)
        if hparams.get('pe_enable') is not None and hparams['pe_enable']:
            gt_f0 = (gt_f0 - 100) / (800 - 100) * 80 * (gt_f0 > 0)
            pred_f0 = (pred_f0 - 100) / (800 - 100) * 80 * (pred_f0 > 0)
            plt.plot(pred_f0, c='white', linewidth=1, alpha=0.6)
            plt.plot(gt_f0, c='red', linewidth=1, alpha=0.6)
        else:
            f0, _ = get_pitch(wav_out, mel, hparams)
            f0 = (f0 - 100) / (800 - 100) * 80 * (f0 > 0)
            plt.plot(f0, c='white', linewidth=1, alpha=0.6)
        if mel2ph is not None and str_phs is not None:
            decoded_txt = str_phs.split(" ")
            dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy()
            dur = [0] + list(np.cumsum(dur))
            for i in range(len(dur) - 1):
                shift = (i % 20) + 1
                plt.text(dur[i], shift, decoded_txt[i])
                plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black')
                plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black',
                           alpha=1, linewidth=1)
        plt.tight_layout()
        plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png', dpi=1000)
        plt.close(fig)

    ##############
    # utils
    ##############
    @staticmethod
    def expand_f0_ph(f0, mel2ph):
        f0 = denorm_f0(f0, None, hparams)
        f0 = F.pad(f0, [1, 0])
        f0 = torch.gather(f0, 1, mel2ph)  # [B, T_mel]
        return f0


if __name__ == '__main__':
    FastSpeech2Task.start()