File size: 22,676 Bytes
d6682b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import copy
import random

import torch
from torch.nn import functional as F
from .utils import parent_module, brackets_to_periods, EarlyStopMeter, EditingMeanAct
import transformers
import numpy as np
from torch import Tensor
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from .merge import slerp, GTA, linear
import torch.nn as nn
import gc

merge_dict = {
    'slerp': slerp(),
    'ties': GTA('magnitude', 'sum', normalize=True),
    'magnitude_norm': GTA('magnitude', None, normalize=True),
    'magnitude': GTA('magnitude', None, normalize=False),
    'sign': GTA(None, 'sum', normalize=True),
    'dare_ties': GTA('rescaled_random', 'sum'),
    'dare_linear': GTA('random', None),
    'linear': linear()
}

edit_history = []
merge_group_edit_history = []

def euc(query, key, config, act_mask=None, infer=False):
    # Euclidean distance

    act_fn = ACT2FN[config.hidden_act]
    l2_norm = torch.norm(act_fn(key) - act_fn(query), dim=-1)
    if infer and l2_norm.size(1) > 100:
        topk = torch.topk(l2_norm, k=1, largest=True)
        return topk.values.mean()

    if act_mask is not None:
        return torch.sum(l2_norm * act_mask, dim=1) / torch.sum(act_mask, dim=1)
    else:
        return torch.mean(l2_norm, dim=-1)


class WISE(torch.nn.Module):
    def __init__(self, config, model, device):
        super(WISE, self).__init__()
        self.config = config
        self.model = model
        self.config = config
        if hasattr(self.model.config, 'hidden_act'):
            self.config.hidden_act = self.model.config.hidden_act
        elif hasattr(self.model.config, 'activation_function'):
            self.config.hidden_act = self.model.config.activation_function
        # self.tokenizer = model.tokenizer
        layer = config.inner_params[0]
        self.device = device
        self.adapter_layer = None
        self.original_layer = None

        # --- ensure proper formatting (WISE edits weights matrices) ---
        suffixes = [".weight", ".bias"]
        self.layer = layer.rsplit(".", 1)[0] if any(layer.endswith(x) for x in suffixes) else layer

        for n, p in self.model.named_parameters():
            p.requires_grad = False

        if isinstance(self.model, transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel):
            conv1D = True
        else:
            conv1D = False

        # --- Add WISE to chosen layers ---
        self.edit_module = parent_module(self.model, brackets_to_periods(self.layer))
        self.layer_name = self.layer.rsplit(".", 1)[-1]
        adapter_layer = getattr(self.edit_module, self.layer_name)

        if type(adapter_layer) is not WISEAdapter:
            setattr(self.edit_module, self.layer_name, WISEAdapter(config, adapter_layer, conv1D=conv1D))
            self.original_layer = copy.deepcopy(adapter_layer)
            print(f"New weights successfully inserted into {layer}")
        
        gc.collect()
        torch.cuda.empty_cache()
        gc.collect()

    # Forward
    def __call__(self, **kwargs):
        if not self.config.retrieve:
            if hasattr(self.get_adapter_layer(), 'editing') and not self.get_adapter_layer().editing:
                # final merge
                if not self.get_adapter_layer().original_layer.weight.equal(self.get_adapter_layer().new_weight) and self.get_adapter_layer().editing_total_cnt >= self.config.save_freq:
                    self.get_adapter_layer().memory_weight.append(self.get_adapter_layer().new_weight)
                if len(self.get_adapter_layer().memory_weight) > 0 and self.get_adapter_layer().editing_total_cnt >= self.config.save_freq:
                    print('length of memory is ', len(self.get_adapter_layer().memory_weight), '!!!!!!')
                    self.get_adapter_layer().merge_weight()
        return self.model(**kwargs)

    def reset_layer(self):
        layer = getattr(self.edit_module, self.layer_name)
        del layer
        setattr(self.edit_module, self.layer_name, self.get_adapter_layer().original_layer)

    def get_adapter_layer(self):
        adapter_layer = getattr(self.edit_module, self.layer_name)
        assert type(adapter_layer) is WISEAdapter, print('Adapter Layer is not added correctly....')
        return adapter_layer

    # TODO: generation
    def generate(self, *args, **kwargs):
        setattr(eval(f"self.model.{self.layer}"), "key_id", -1)
        return self.model.generate(*args, **kwargs)

    def edit(self, config, tokens, act_mask=None, deact_mask=None):
        # for retrieve ##
        global edit_history
        global merge_group_edit_history
        edit_history.append([{f"{k1}" : v1.to('cpu') for k1, v1 in tokens.items()}, False])
        # for retrieve ##
        last_prompt_token_loc = (tokens["labels"] == -100).sum(dim=-1) - 1

        setattr(eval(f"self.model.{self.layer}"), "training", True)
        setattr(eval(f"self.model.{self.layer}"), "editing", True)
        self.get_adapter_layer().set_parameter_tunable()
        if getattr(eval(f"self.model.{self.layer}"), "editing_total_cnt") % self.config.save_freq == 0:
            self.get_adapter_layer().generate_activation_mask(self.config.mask_ratio)

        # --- train Wise value ---
        loss_meter = EarlyStopMeter()
        for i in range(config.n_iter):

            if i == 0:
                # --- we only need to create an optimizer for the first iteration (but forward pass instantiates the key, so optimzer is passed after first inference) ---
                optimizer = torch.optim.SGD([self.get_adapter_layer().new_weight], config.edit_lr, weight_decay=1e-5)

            ft_loss = self.__cal_ft_loss(tokens, last_prompt_token_loc)

            act_loss = self.__cal_activation_loss(self.get_adapter_layer().original_layer_output, self.get_adapter_layer().new_weight_layer_output,
                                                  config=config, act_mask=act_mask, deact_mask=deact_mask)
            loss = ft_loss + act_loss.to(ft_loss.device)

            if loss_meter.stop():
                self.get_adapter_layer().save_editing_activation()  # add last gradient
                break
            if i == config.n_iter - 1:
                self.get_adapter_layer().save_editing_activation()  # add last gradient

            if self.config.retrieve and self.get_adapter_layer().merge_cnt > 0 and self.config.replay:
                memory_loss = []
                for _ in merge_group_edit_history:
                    idx = 0
                    while True:
                        memo_input, is_used = _[idx]
                        if not is_used:
                            _[idx][1] = True
                            break
                        idx += 1
                        if idx == len(_): ## re Assign
                            for m in range(len(_)):
                                _[m][1] = False
                            idx = 0

                    memo_input = {f"{k1}" : v1.to(self.config.device) for k1, v1 in memo_input.items()}
                    self.model(**memo_input)

                    memory_act_loss = self.__cal_memory_neg_activation_loss(self.get_adapter_layer().original_layer_output,
                                                    self.get_adapter_layer().new_weight_layer_output, config=config,
                                                    act_mask=act_mask, deact_mask=deact_mask)
                    memory_loss.append(memory_act_loss.to(ft_loss.device))
                    del memo_input
                neg_memo_loss = torch.stack(memory_loss).mean()
                loss += neg_memo_loss
                if len(edit_history) > 0:
                    memo_input = random.choice(edit_history)[0]
                    memo_input = {f"{k1}" : v1.to(self.config.device) for k1, v1 in memo_input.items()}
                    self.model(**memo_input)

                    pos_memo_loss = self.__cal_memory_pos_activation_loss(self.get_adapter_layer().original_layer_output,
                                                    self.get_adapter_layer().new_weight_layer_output, config=config,
                                                    act_mask=act_mask, deact_mask=deact_mask)
                    del memo_input
                    loss += pos_memo_loss.to(ft_loss.device)
            # for replay Appendix B.3

            optimizer.zero_grad()

            loss.backward()
            self.get_adapter_layer().mask_new_weight_gradient()

            if self.config.retrieve and self.get_adapter_layer().merge_cnt > 0 and self.config.replay:
                print(
                    f"loss {np.round(loss.item(), 3)} = {np.round(ft_loss.item(), 3)} + {np.round(act_loss.item(), 3)} + {np.round(neg_memo_loss.item(), 3)} + {np.round(pos_memo_loss.item(), 3)}"
                )
            else:
                print(
                    f"loss {np.round(loss.item(), 3)} = {np.round(ft_loss.item(), 3)} + {np.round(act_loss.item(), 3)}"
                )

            optimizer.step()
            loss_meter.update(loss.item())

            if type(self.config.norm_constraint) is float:
                self.__norm_constraint(self.config.norm_constraint)

        # --- pull out info we want to log from the Wise layer ---
        setattr(eval(f"self.model.{self.layer}"), "editing", False)
        setattr(eval(f"self.model.{self.layer}"), "training", False)

        editing_total_cnt = getattr(eval(f"self.model.{self.layer}"), "editing_total_cnt") + 1
        setattr(eval(f"self.model.{self.layer}"), "editing_total_cnt", editing_total_cnt)
        #
        if self.config.save_freq is not None and editing_total_cnt % self.config.save_freq == 0:
            self.get_adapter_layer().save_weight()
            print(f'Add New Weight to Memory...')
        if editing_total_cnt % self.config.merge_freq == 0:
            # for retrieve ##
            merge_group_edit_history.append(edit_history)
            edit_history = []
            # for retrieve ##

            self.get_adapter_layer().merge_weight()
            print(f'Merge Weight of (New, Original) Matrix... with {self.config.merge_alg}')

    def __norm_constraint(self, norm_constraint):
        new_weight = self.get_adapter_layer().new_weight
        original_weight = self.get_adapter_layer().weight
        with torch.no_grad():
            new_weight[...] = torch.clamp(
                new_weight, min=original_weight - norm_constraint, max=original_weight + norm_constraint
            )

    def __cal_ft_loss(self, tokens, last_prompt_token_loc):
        k = 1
        bs = tokens["input_ids"].shape[0] - k
        logits = self.model(**tokens).logits
        shift_logits = logits[:-k, :-1, :].contiguous()
        shift_labels = tokens['labels'][:-k, 1:].contiguous()




        label_mask = torch.zeros_like(shift_labels, dtype=torch.bool)

        for i, col_index in enumerate(last_prompt_token_loc[:-k]):
            label_mask[i, col_index-1:] = True

        shift_labels[~label_mask] = -100

        log_probs = -nn.functional.log_softmax(shift_logits, dim=-1)

        if shift_labels.dim() == log_probs.dim() - 1:
            shift_labels = shift_labels.unsqueeze(-1)

        padding_mask = shift_labels.eq(-100)

        # In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
        # will ignore them in any case.
        shift_labels = torch.clamp(shift_labels, min=0)

        nll_loss = log_probs.gather(dim=-1, index=shift_labels)
        nll_loss.masked_fill_(padding_mask, 0.0)

        num_active_elements = padding_mask.numel() - padding_mask.long().sum()
        nll_loss = nll_loss.sum() / num_active_elements

        return nll_loss
        # loss_fct = CrossEntropyLoss(reduction='none')
        # loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
        # loss = loss.view(bs, -1)

        # label_mask = torch.zeros_like(loss, dtype=torch.bool)

        # for i, col_index in enumerate(last_prompt_token_loc[:-k]):
        #     label_mask[i, col_index - 1:] = True

        # ft_loss = ((loss * label_mask).sum(1) / label_mask.sum(1)).mean()
        # return ft_loss

    def __cal_activation_loss(self, original_layer_output, new_weight_layer_output, config=None, act_mask=None,
                              deact_mask=None):
        k = 1
        if act_mask is not None:
            in_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config,
                                act_mask=act_mask)
            out_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config,
                                 act_mask=deact_mask)
        else:
            in_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config)
            out_scope_dist = euc(original_layer_output[-k:, ...], new_weight_layer_output[-k:, ...], config)

        loss = out_scope_dist.view(-1,1) - in_scope_dist + config.gamma
        loss2 = out_scope_dist - config.alpha
        loss3 = config.beta - in_scope_dist
        loss3 = torch.mean(loss3[loss3 > 0]) if min(loss3[loss3 > 0].size()) > 0 else torch.tensor(0.).to(original_layer_output.device)
        loss2 = torch.mean(loss2[loss2 > 0]) if min(loss2[loss2 > 0].size()) > 0 else torch.tensor(0.).to(original_layer_output.device)
        loss = torch.mean(loss[loss > 0]) if min(loss[loss > 0].size()) > 0 else torch.tensor(0.).to(original_layer_output.device)
        return loss + loss2 + loss3

    def __cal_memory_pos_activation_loss(self, original_layer_output, new_weight_layer_output, config=None, act_mask=None,
                              deact_mask=None):
        k = 1
        in_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config)
        loss4 = 20 - in_scope_dist

        return torch.mean(loss4[loss4 > 0]) if min(loss4[loss4 > 0].size()) > 0 else torch.tensor(0.)

    def __cal_memory_neg_activation_loss(self, original_layer_output, new_weight_layer_output, config=None, act_mask=None,
                              deact_mask=None):
        k = 1
        in_scope_dist = euc(original_layer_output[:-k, ...], new_weight_layer_output[:-k, ...], config)
        loss4 = in_scope_dist - 5

        return torch.mean(loss4[loss4 > 0]) if min(loss4[loss4 > 0].size()) > 0 else torch.tensor(0.)

class WISEAdapter(torch.nn.Module):
    def __init__(self, config, layer, conv1D):
        super(WISEAdapter, self).__init__()

        self.layer = layer
        self.weight = self.layer.weight
        self.device = layer.weight.device
        self.config = config
        self.new_weight = copy.deepcopy(self.weight)
        self.original_layer = copy.deepcopy(self.layer)
        self.memory_weight = []
        self.memory_mean_act = []
        self.merge_cnt = 0  # only for retrieve
        assert not self.weight.requires_grad, print('Original Layer can not be tunable....')

        self.used_mask = None 

        self.training = False
        self.editing = False
        self.conv1D = conv1D

        self.editing_mean_act = EditingMeanAct()
        self.editing_total_cnt = 0

    def set_parameter_tunable(self):
        self.new_weight.requires_grad = True

    def save_weight(self):
        self.memory_weight.append(copy.deepcopy(self.new_weight))
        self.new_weight = copy.deepcopy(self.original_layer.weight)
        if self.config.retrieve:
            self.memory_mean_act.append(copy.deepcopy(self.editing_mean_act))
            self.editing_mean_act = EditingMeanAct()

    def merge_weight(self):
        if self.config.save_freq is not None:  # for ties dare dare_ties
            if not self.config.retrieve:
                merge_alg = merge_dict[self.config.merge_alg]
                if self.original_layer.weight.equal(self.layer.weight):
                    cur_new_weight = merge_alg.execute([self.config.weights / len(self.memory_weight) for _ in range(len(self.memory_weight))], self.original_layer.weight, self.memory_weight, densities=self.config.densities)
                else:
                    cur_new_weight = merge_alg.execute([0.4 / len(self.memory_weight) for _ in range(len(self.memory_weight))] + [0.6], self.original_layer.weight, self.memory_weight + [self.layer.weight], densities=self.config.densities)
                self.layer.weight = torch.nn.Parameter(cur_new_weight.to(self.layer.weight.device), requires_grad=False)
                self.new_weight = copy.deepcopy(self.original_layer.weight)
                del self.memory_weight
                self.memory_weight = []
            else:
                merge_alg = merge_dict[self.config.merge_alg]
                merge_num = self.config.merge_freq // self.config.save_freq
                assert len(self.memory_weight) >= merge_num
                new_merge_weight = merge_alg.execute([self.config.weights / merge_num for _ in range(merge_num)], self.original_layer.weight, self.memory_weight[-merge_num:], densities=self.config.densities)
                min_a = 1e9
                for _ in range(merge_num):
                    self.memory_weight.pop()
                    edit_act = self.memory_mean_act.pop()
                    min_a = min(min_a, edit_act.min_act())
                self.new_weight = copy.deepcopy(self.original_layer.weight)
                self.memory_weight.append(new_merge_weight)
                self.memory_mean_act.append(EditingMeanAct(min_a=min_a))
                print(len(self.memory_weight))
                assert len(self.memory_mean_act) == len(self.memory_weight)
                self.merge_cnt += 1
        else:
            merge_alg = merge_dict[self.config.merge_alg]
            cur_new_weight = merge_alg.execute(0.5, self.layer.weight, [self.new_weight],
                                               densities=self.config.densities)
            self.layer.weight = torch.nn.Parameter(cur_new_weight.to(self.layer.weight.device), requires_grad=False)
            self.new_weight = copy.deepcopy(self.original_layer.weight)

    def save_editing_activation(self):
        in_scope_dist = euc(self.original_layer_output[:-1, ...], self.new_weight_layer_output[:-1, ...], self.config)
        self.editing_mean_act.update(in_scope_dist.mean().item())

    def generate_activation_mask(self, mask_ratio):
        p_grad = self.new_weight.reshape(-1)
        p_mask = np.random.choice([1, 0], size=p_grad.size()[0], p=[mask_ratio, 1 - mask_ratio])
        p_mask = torch.from_numpy(p_mask).to(p_grad.device)
        self.weight_mask = p_mask

    def generate_non_overlapping_mask(self, mask_ratio):
        p_grad = self.new_weight.reshape(-1)
        mask_size = int(mask_ratio * p_grad.size()[0])
        if self.used_mask is None:
            self.used_mask = np.zeros(p_grad.size()[0], dtype=bool)
        available_indices = np.where(~self.used_mask)[0]  # 获取未被遮罩的元素索引
        if len(available_indices) < mask_size:
            raise ValueError("Not enough unused elements to generate a new mask.")
        chosen_indices = np.random.choice(available_indices, size=mask_size, replace=False)
        mask_array = np.zeros(p_grad.size()[0], dtype=int)
        mask_array[chosen_indices] = 1
        self.used_mask[chosen_indices] = True  # 更新遮罩状态
        self.weight_mask = torch.from_numpy(mask_array).to(p_grad.device)

    def new_weight_forward(self, input: Tensor, weight) -> Tensor:
        if self.conv1D:
            size_out = input.size()[:-1] + (weight.size(1),)
            input = torch.addmm(self.original_layer.bias, input.view(-1, input.size(-1)), weight)
            input = input.view(size_out)
            return input
        else:
            return F.linear(input, weight)

    def mask_new_weight_gradient(self):
        assert self.new_weight.grad is not None, print('Gradient Collection for New Weight error, gradient not found')
        # Add gradient mask after the loss updates
        p_size = self.new_weight.grad.size()
        p_grad = self.new_weight.grad.reshape(-1)

        # mask = torch.from_numpy(np.random.choice([0, 1], size=p_grad.size()[0], p=[.1, .9])).cuda()
        p_grad = p_grad * self.weight_mask
        self.new_weight.grad = p_grad.view(p_size).to(self.new_weight.grad.dtype)

    def forward(self, *args):
        if self.editing:
            layer_out = self.new_weight_forward(*args, self.new_weight)
            self.new_weight_layer_output = layer_out
            self.original_layer_output = self.original_layer(*args)
        else:
            if not self.config.retrieve:
                original_layer_output = self.original_layer(*args)
                layer_output = self.layer(*args)
                new_weight_layer_output = self.new_weight_forward(*args, self.new_weight)
                dist2 = euc(original_layer_output, new_weight_layer_output, self.config, infer=True)
                dist1 = euc(original_layer_output, layer_output, self.config, infer=True)
                threshold = self.editing_mean_act.min_act() * self.config.act_ratio

                if dist1.item() < threshold and dist2.item() < threshold:
                    layer_out = original_layer_output
                elif dist1.item() > dist2.item():
                    layer_out = layer_output
                else:
                    layer_out = new_weight_layer_output
            else:
                original_layer_output = self.original_layer(*args)
                new_weight_layer_output = self.new_weight_forward(*args, self.new_weight)
                dist1 = euc(original_layer_output, new_weight_layer_output, self.config, infer=True)
                threshold = self.editing_mean_act.min_act() * self.config.act_ratio
                min_dist = dist1
                if min_dist.item() < threshold:
                    layer_out = original_layer_output
                else:
                    layer_out = new_weight_layer_output

                for i in range(len(self.memory_weight)):
                    memory_retrieve_weight = self.memory_weight[i]
                    memory_weight_layer_output = self.new_weight_forward(*args, memory_retrieve_weight)
                    dist = euc(original_layer_output, memory_weight_layer_output, self.config, infer=True)
                    if dist > min_dist and dist > self.memory_mean_act[i].min_act() * self.config.act_ratio:
                        layer_out = memory_weight_layer_output
                        min_dist = dist
                    print(dist, self.memory_mean_act[i].min_act() * self.config.act_ratio)
        return layer_out