File size: 16,456 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from typing import Optional, Any, List, Tuple
from collections import namedtuple, deque
from easydict import EasyDict
import numpy as np
import torch

from ding.envs import BaseEnvManager
from ding.utils import build_logger, EasyTimer, SERIAL_COLLECTOR_REGISTRY, dicts_to_lists
from ding.torch_utils import to_tensor, to_ndarray
from ding.worker.collector.base_serial_collector import ISerialCollector, CachePool, TrajBuffer, INF, \
    to_tensor_transitions


@SERIAL_COLLECTOR_REGISTRY.register('league_demo')
class LeagueDemoCollector(ISerialCollector):
    """
    Overview:
        League demo collector, derived from BattleEpisodeSerialCollector, add action probs viz.
    Interfaces:
        __init__, reset, reset_env, reset_policy, collect, close
    Property:
        envstep
    """

    config = dict(deepcopy_obs=False, transform_obs=False, collect_print_freq=100, get_train_sample=False)

    def __init__(
            self,
            cfg: EasyDict,
            env: BaseEnvManager = None,
            policy: List[namedtuple] = None,
            tb_logger: 'SummaryWriter' = None,  # noqa
            exp_name: Optional[str] = 'default_experiment',
            instance_name: Optional[str] = 'collector'
    ) -> None:
        """
        Overview:
            Initialization method.
        Arguments:
            - cfg (:obj:`EasyDict`): Config dict
            - env (:obj:`BaseEnvManager`): the subclass of vectorized env_manager(BaseEnvManager)
            - policy (:obj:`List[namedtuple]`): the api namedtuple of collect_mode policy
            - tb_logger (:obj:`SummaryWriter`): tensorboard handle
        """
        self._exp_name = exp_name
        self._instance_name = instance_name
        self._collect_print_freq = cfg.collect_print_freq
        self._deepcopy_obs = cfg.deepcopy_obs
        self._transform_obs = cfg.transform_obs
        self._cfg = cfg
        self._timer = EasyTimer()
        self._end_flag = False

        if tb_logger is not None:
            self._logger, _ = build_logger(
                path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False
            )
            self._tb_logger = tb_logger
        else:
            self._logger, self._tb_logger = build_logger(
                path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name
            )
        self._traj_len = float("inf")
        self.reset(policy, env)

    def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None:
        """
        Overview:
            Reset the environment.
            If _env is None, reset the old environment.
            If _env is not None, replace the old environment in the collector with the new passed \
                in environment and launch.
        Arguments:
            - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
                env_manager(BaseEnvManager)
        """
        if _env is not None:
            self._env = _env
            self._env.launch()
            self._env_num = self._env.env_num
        else:
            self._env.reset()

    def reset_policy(self, _policy: Optional[List[namedtuple]] = None) -> None:
        """
        Overview:
            Reset the policy.
            If _policy is None, reset the old policy.
            If _policy is not None, replace the old policy in the collector with the new passed in policy.
        Arguments:
            - policy (:obj:`Optional[List[namedtuple]]`): the api namedtuple of collect_mode policy
        """
        assert hasattr(self, '_env'), "please set env first"
        if _policy is not None:
            assert len(_policy) == 2, "1v1 episode collector needs 2 policy, but found {}".format(len(_policy))
            self._policy = _policy
            self._default_n_episode = _policy[0].get_attribute('cfg').collect.get('n_episode', None)
            self._unroll_len = _policy[0].get_attribute('unroll_len')
            self._on_policy = _policy[0].get_attribute('cfg').on_policy
            self._traj_len = INF
            self._logger.debug(
                'Set default n_episode mode(n_episode({}), env_num({}), traj_len({}))'.format(
                    self._default_n_episode, self._env_num, self._traj_len
                )
            )
        for p in self._policy:
            p.reset()

    def reset(self, _policy: Optional[List[namedtuple]] = None, _env: Optional[BaseEnvManager] = None) -> None:
        """
        Overview:
            Reset the environment and policy.
            If _env is None, reset the old environment.
            If _env is not None, replace the old environment in the collector with the new passed \
                in environment and launch.
            If _policy is None, reset the old policy.
            If _policy is not None, replace the old policy in the collector with the new passed in policy.
        Arguments:
            - policy (:obj:`Optional[List[namedtuple]]`): the api namedtuple of collect_mode policy
            - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
                env_manager(BaseEnvManager)
        """
        if _env is not None:
            self.reset_env(_env)
        if _policy is not None:
            self.reset_policy(_policy)

        self._obs_pool = CachePool('obs', self._env_num, deepcopy=self._deepcopy_obs)
        self._policy_output_pool = CachePool('policy_output', self._env_num)
        # _traj_buffer is {env_id: {policy_id: TrajBuffer}}, is used to store traj_len pieces of transitions
        self._traj_buffer = {
            env_id: {policy_id: TrajBuffer(maxlen=self._traj_len)
                     for policy_id in range(2)}
            for env_id in range(self._env_num)
        }
        self._env_info = {env_id: {'time': 0., 'step': 0} for env_id in range(self._env_num)}

        self._episode_info = []
        self._total_envstep_count = 0
        self._total_episode_count = 0
        self._total_duration = 0
        self._last_train_iter = 0
        self._end_flag = False

    def _reset_stat(self, env_id: int) -> None:
        """
        Overview:
            Reset the collector's state. Including reset the traj_buffer, obs_pool, policy_output_pool\
                and env_info. Reset these states according to env_id. You can refer to base_serial_collector\
                to get more messages.
        Arguments:
            - env_id (:obj:`int`): the id where we need to reset the collector's state
        """
        for i in range(2):
            self._traj_buffer[env_id][i].clear()
        self._obs_pool.reset(env_id)
        self._policy_output_pool.reset(env_id)
        self._env_info[env_id] = {'time': 0., 'step': 0}

    @property
    def envstep(self) -> int:
        """
        Overview:
            Print the total envstep count.
        Return:
            - envstep (:obj:`int`): the total envstep count
        """
        return self._total_envstep_count

    def close(self) -> None:
        """
        Overview:
            Close the collector. If end_flag is False, close the environment, flush the tb_logger\
                and close the tb_logger.
        """
        if self._end_flag:
            return
        self._end_flag = True
        self._env.close()
        self._tb_logger.flush()
        self._tb_logger.close()

    def __del__(self) -> None:
        """
        Overview:
            Execute the close command and close the collector. __del__ is automatically called to \
                destroy the collector instance when the collector finishes its work
        """
        self.close()

    def collect(self,
                n_episode: Optional[int] = None,
                train_iter: int = 0,
                policy_kwargs: Optional[dict] = None) -> Tuple[List[Any], List[Any]]:
        """
        Overview:
            Collect `n_episode` data with policy_kwargs, which is already trained `train_iter` iterations
        Arguments:
            - n_episode (:obj:`int`): the number of collecting data episode
            - train_iter (:obj:`int`): the number of training iteration
            - policy_kwargs (:obj:`dict`): the keyword args for policy forward
        Returns:
            - return_data (:obj:`Tuple[List, List]`): A tuple with training sample(data) and episode info, \
                the former is a list containing collected episodes if not get_train_sample, \
                otherwise, return train_samples split by unroll_len.
        """
        if n_episode is None:
            if self._default_n_episode is None:
                raise RuntimeError("Please specify collect n_episode")
            else:
                n_episode = self._default_n_episode
        assert n_episode >= self._env_num, "Please make sure n_episode >= env_num"
        if policy_kwargs is None:
            policy_kwargs = {}
        collected_episode = 0
        return_data = [[] for _ in range(2)]
        return_info = [[] for _ in range(2)]
        ready_env_id = set()
        remain_episode = n_episode

        while True:
            with self._timer:
                # Get current env obs.
                obs = self._env.ready_obs
                new_available_env_id = set(obs.keys()).difference(ready_env_id)
                ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode]))
                remain_episode -= min(len(new_available_env_id), remain_episode)
                obs = {env_id: obs[env_id] for env_id in ready_env_id}
                # Policy forward.
                self._obs_pool.update(obs)
                if self._transform_obs:
                    obs = to_tensor(obs, dtype=torch.float32)
                obs = dicts_to_lists(obs)
                policy_output = [p.forward(obs[i], **policy_kwargs) for i, p in enumerate(self._policy)]
                self._policy_output_pool.update(policy_output)
                # Interact with env.
                actions = {}
                for env_id in ready_env_id:
                    actions[env_id] = []
                    for output in policy_output:
                        actions[env_id].append(output[env_id]['action'])
                actions = to_ndarray(actions)
                # temporally for viz
                probs0 = torch.softmax(torch.stack([o['logit'] for o in policy_output[0].values()], 0), 1).mean(0)
                probs1 = torch.softmax(torch.stack([o['logit'] for o in policy_output[1].values()], 0), 1).mean(0)
                timesteps = self._env.step(actions)

            # TODO(nyz) this duration may be inaccurate in async env
            interaction_duration = self._timer.value / len(timesteps)

            # TODO(nyz) vectorize this for loop
            for env_id, timestep in timesteps.items():
                self._env_info[env_id]['step'] += 1
                self._total_envstep_count += 1
                with self._timer:
                    for policy_id, policy in enumerate(self._policy):
                        policy_timestep_data = [d[policy_id] if not isinstance(d, bool) else d for d in timestep]
                        policy_timestep = type(timestep)(*policy_timestep_data)
                        transition = self._policy[policy_id].process_transition(
                            self._obs_pool[env_id][policy_id], self._policy_output_pool[env_id][policy_id],
                            policy_timestep
                        )
                        transition['collect_iter'] = train_iter
                        self._traj_buffer[env_id][policy_id].append(transition)
                        # prepare data
                        if timestep.done:
                            transitions = to_tensor_transitions(self._traj_buffer[env_id][policy_id])
                            if self._cfg.get_train_sample:
                                train_sample = self._policy[policy_id].get_train_sample(transitions)
                                return_data[policy_id].extend(train_sample)
                            else:
                                return_data[policy_id].append(transitions)
                            self._traj_buffer[env_id][policy_id].clear()

                self._env_info[env_id]['time'] += self._timer.value + interaction_duration

                # If env is done, record episode info and reset
                if timestep.done:
                    self._total_episode_count += 1
                    info = {
                        'reward0': timestep.info[0]['eval_episode_return'],
                        'reward1': timestep.info[1]['eval_episode_return'],
                        'time': self._env_info[env_id]['time'],
                        'step': self._env_info[env_id]['step'],
                        'probs0': probs0,
                        'probs1': probs1,
                    }
                    collected_episode += 1
                    self._episode_info.append(info)
                    for i, p in enumerate(self._policy):
                        p.reset([env_id])
                    self._reset_stat(env_id)
                    ready_env_id.remove(env_id)
                    for policy_id in range(2):
                        return_info[policy_id].append(timestep.info[policy_id])
            if collected_episode >= n_episode:
                break
        # log
        self._output_log(train_iter)
        return return_data, return_info

    def _output_log(self, train_iter: int) -> None:
        """
        Overview:
            Print the output log information. You can refer to Docs/Best Practice/How to understand\
             training generated folders/Serial mode/log/collector for more details.
        Arguments:
            - train_iter (:obj:`int`): the number of training iteration.
        """
        if (train_iter - self._last_train_iter) >= self._collect_print_freq and len(self._episode_info) > 0:
            self._last_train_iter = train_iter
            episode_count = len(self._episode_info)
            envstep_count = sum([d['step'] for d in self._episode_info])
            duration = sum([d['time'] for d in self._episode_info])
            episode_return0 = [d['reward0'] for d in self._episode_info]
            episode_return1 = [d['reward1'] for d in self._episode_info]
            probs0 = [d['probs0'] for d in self._episode_info]
            probs1 = [d['probs1'] for d in self._episode_info]
            self._total_duration += duration
            info = {
                'episode_count': episode_count,
                'envstep_count': envstep_count,
                'avg_envstep_per_episode': envstep_count / episode_count,
                'avg_envstep_per_sec': envstep_count / duration,
                'avg_episode_per_sec': episode_count / duration,
                'collect_time': duration,
                'reward0_mean': np.mean(episode_return0),
                'reward0_std': np.std(episode_return0),
                'reward0_max': np.max(episode_return0),
                'reward0_min': np.min(episode_return0),
                'reward1_mean': np.mean(episode_return1),
                'reward1_std': np.std(episode_return1),
                'reward1_max': np.max(episode_return1),
                'reward1_min': np.min(episode_return1),
                'total_envstep_count': self._total_envstep_count,
                'total_episode_count': self._total_episode_count,
                'total_duration': self._total_duration,
            }
            info.update(
                {
                    'probs0_select_action0': sum([p[0] for p in probs0]) / len(probs0),
                    'probs0_select_action1': sum([p[1] for p in probs0]) / len(probs0),
                    'probs1_select_action0': sum([p[0] for p in probs1]) / len(probs1),
                    'probs1_select_action1': sum([p[1] for p in probs1]) / len(probs1),
                }
            )
            self._episode_info.clear()
            self._logger.info("collect end:\n{}".format('\n'.join(['{}: {}'.format(k, v) for k, v in info.items()])))
            for k, v in info.items():
                self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter)
                if k in ['total_envstep_count']:
                    continue
                self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, self._total_envstep_count)