File size: 11,450 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from functools import partial, lru_cache
from typing import Callable, Optional

import numpy as np

import ding
from .default_helper import one_time_warning


@lru_cache()
def njit():
    """
    Overview:
        Decorator to compile a function using numba.
    """

    try:
        if ding.enable_numba:
            import numba
            from numba import njit as _njit
            version = numba.__version__
            middle_version = version.split(".")[1]
            if int(middle_version) < 53:
                _njit = partial  # noqa
                one_time_warning(
                    "Due to your numba version <= 0.53.0, DI-engine disables it. And you can install \
                    numba==0.53.0 if you want to speed up something"
                )
        else:
            _njit = partial
    except ImportError:
        one_time_warning("If you want to use numba to speed up segment tree, please install numba first")
        _njit = partial
    return _njit


class SegmentTree:
    """
    Overview:
        Segment tree data structure, implemented by the tree-like array. Only the leaf nodes are real value,
        non-leaf nodes are to do some operations on its left and right child.
    Interfaces:
        ``__init__``, ``reduce``, ``__setitem__``, ``__getitem__``
    """

    def __init__(self, capacity: int, operation: Callable, neutral_element: Optional[float] = None) -> None:
        """
        Overview:
            Initialize the segment tree. Tree's root node is at index 1.
        Arguments:
            - capacity (:obj:`int`): Capacity of the tree (the number of the leaf nodes), should be the power of 2.
            - operation (:obj:`function`): The operation function to construct the tree, e.g. sum, max, min, etc.
            - neutral_element (:obj:`float` or :obj:`None`): The value of the neutral element, which is used to init \
                all nodes value in the tree.
        """
        assert capacity > 0 and capacity & (capacity - 1) == 0
        self.capacity = capacity
        self.operation = operation
        # Set neutral value(initial value) for all elements.
        if neutral_element is None:
            if operation == 'sum':
                neutral_element = 0.
            elif operation == 'min':
                neutral_element = np.inf
            elif operation == 'max':
                neutral_element = -np.inf
            else:
                raise ValueError("operation argument should be in min, max, sum (built in python functions).")
        self.neutral_element = neutral_element
        # Index 1 is the root; Index ranging in [capacity, 2 * capacity - 1] are the leaf nodes.
        # For each parent node with index i, left child is value[2*i] and right child is value[2*i+1].
        self.value = np.full([capacity * 2], neutral_element)
        self._compile()

    def reduce(self, start: int = 0, end: Optional[int] = None) -> float:
        """
        Overview:
            Reduce the tree in range ``[start, end)``
        Arguments:
            - start (:obj:`int`): Start index(relative index, the first leaf node is 0), default set to 0
            - end (:obj:`int` or :obj:`None`): End index(relative index), default set to ``self.capacity``
        Returns:
            - reduce_result (:obj:`float`): The reduce result value, which is dependent on data type and operation
        """
        # TODO(nyz) check if directly reduce from the array(value) can be faster
        if end is None:
            end = self.capacity
        assert (start < end)
        # Change to absolute leaf index by adding capacity.
        start += self.capacity
        end += self.capacity
        return _reduce(self.value, start, end, self.neutral_element, self.operation)

    def __setitem__(self, idx: int, val: float) -> None:
        """
        Overview:
            Set ``leaf[idx] = val``; Then update the related nodes.
        Arguments:
            - idx (:obj:`int`): Leaf node index(relative index), should add ``capacity`` to change to absolute index.
            - val (:obj:`float`): The value that will be assigned to ``leaf[idx]``.
        """
        assert (0 <= idx < self.capacity), idx
        # ``idx`` should add ``capacity`` to change to absolute index.
        _setitem(self.value, idx + self.capacity, val, self.operation)

    def __getitem__(self, idx: int) -> float:
        """
        Overview:
            Get ``leaf[idx]``
        Arguments:
            - idx (:obj:`int`): Leaf node ``index(relative index)``, add ``capacity`` to change to absolute index.
        Returns:
            - val (:obj:`float`): The value of ``leaf[idx]``
        """
        assert (0 <= idx < self.capacity)
        return self.value[idx + self.capacity]

    def _compile(self) -> None:
        """
        Overview:
            Compile the functions using numba.
        """

        f64 = np.array([0, 1], dtype=np.float64)
        f32 = np.array([0, 1], dtype=np.float32)
        i64 = np.array([0, 1], dtype=np.int64)
        for d in [f64, f32, i64]:
            _setitem(d, 0, 3.0, 'sum')
            _reduce(d, 0, 1, 0.0, 'min')
            _find_prefixsum_idx(d, 1, 0.5, 0.0)


class SumSegmentTree(SegmentTree):
    """
    Overview:
        Sum segment tree, which is inherited from ``SegmentTree``. Init by passing ``operation='sum'``.
    Interfaces:
        ``__init__``, ``find_prefixsum_idx``
    """

    def __init__(self, capacity: int) -> None:
        """
        Overview:
            Init sum segment tree by passing ``operation='sum'``
        Arguments:
            - capacity (:obj:`int`): Capacity of the tree (the number of the leaf nodes).
        """
        super(SumSegmentTree, self).__init__(capacity, operation='sum')

    def find_prefixsum_idx(self, prefixsum: float, trust_caller: bool = True) -> int:
        """
        Overview:
            Find the highest non-zero index i, sum_{j}leaf[j] <= ``prefixsum`` (where 0 <= j < i)
            and sum_{j}leaf[j] > ``prefixsum`` (where 0 <= j < i+1)
        Arguments:
            - prefixsum (:obj:`float`): The target prefixsum.
            - trust_caller (:obj:`bool`): Whether to trust caller, which means whether to check whether \
                this tree's sum is greater than the input ``prefixsum`` by calling ``reduce`` function.
                Default set to True.
        Returns:
            - idx (:obj:`int`): Eligible index.
        """
        if not trust_caller:
            assert 0 <= prefixsum <= self.reduce() + 1e-5, prefixsum
        return _find_prefixsum_idx(self.value, self.capacity, prefixsum, self.neutral_element)


class MinSegmentTree(SegmentTree):
    """
    Overview:
        Min segment tree, which is inherited from ``SegmentTree``. Init by passing ``operation='min'``.
    Interfaces:
        ``__init__``
    """

    def __init__(self, capacity: int) -> None:
        """
        Overview:
            Initialize sum segment tree by passing ``operation='min'``
        Arguments:
            - capacity (:obj:`int`): Capacity of the tree (the number of the leaf nodes).
        """
        super(MinSegmentTree, self).__init__(capacity, operation='min')


@njit()
def _setitem(tree: np.ndarray, idx: int, val: float, operation: str) -> None:
    """
    Overview:
        Set ``tree[idx] = val``; Then update the related nodes.
    Arguments:
        - tree (:obj:`np.ndarray`): The tree array.
        - idx (:obj:`int`): The index of the leaf node.
        - val (:obj:`float`): The value that will be assigned to ``leaf[idx]``.
        - operation (:obj:`str`): The operation function to construct the tree, e.g. sum, max, min, etc.
    """

    tree[idx] = val
    # Update from specified node to the root node
    while idx > 1:
        idx = idx >> 1  # To parent node idx
        left, right = tree[2 * idx], tree[2 * idx + 1]
        if operation == 'sum':
            tree[idx] = left + right
        elif operation == 'min':
            tree[idx] = min([left, right])


@njit()
def _reduce(tree: np.ndarray, start: int, end: int, neutral_element: float, operation: str) -> float:
    """
    Overview:
        Reduce the tree in range ``[start, end)``
    Arguments:
        - tree (:obj:`np.ndarray`): The tree array.
        - start (:obj:`int`): Start index(relative index, the first leaf node is 0).
        - end (:obj:`int`): End index(relative index).
        - neutral_element (:obj:`float`): The value of the neutral element, which is used to init \
            all nodes value in the tree.
        - operation (:obj:`str`): The operation function to construct the tree, e.g. sum, max, min, etc.
    """

    # Nodes in 【start, end) will be aggregated
    result = neutral_element
    while start < end:
        if start & 1:
            # If current start node (tree[start]) is a right child node, operate on start node and increase start by 1
            if operation == 'sum':
                result = result + tree[start]
            elif operation == 'min':
                result = min([result, tree[start]])
            start += 1
        if end & 1:
            # If current end node (tree[end - 1]) is right child node, decrease end by 1 and operate on end node
            end -= 1
            if operation == 'sum':
                result = result + tree[end]
            elif operation == 'min':
                result = min([result, tree[end]])
        # Both start and end transform to respective parent node
        start = start >> 1
        end = end >> 1
    return result


@njit()
def _find_prefixsum_idx(tree: np.ndarray, capacity: int, prefixsum: float, neutral_element: float) -> int:
    """
    Overview:
        Find the highest non-zero index i, sum_{j}leaf[j] <= ``prefixsum`` (where 0 <= j < i)
        and sum_{j}leaf[j] > ``prefixsum`` (where 0 <= j < i+1)
    Arguments:
        - tree (:obj:`np.ndarray`): The tree array.
        - capacity (:obj:`int`): Capacity of the tree (the number of the leaf nodes).
        - prefixsum (:obj:`float`): The target prefixsum.
        - neutral_element (:obj:`float`): The value of the neutral element, which is used to init \
            all nodes value in the tree.
    """

    # The function is to find a non-leaf node's index which satisfies:
    # self.value[idx] > input prefixsum and self.value[idx + 1] <= input prefixsum
    # In other words, we can assume that there are intervals: [num_0, num_1), [num_1, num_2), ... [num_k, num_k+1),
    # the function is to find input prefixsum falls in which interval and return the interval's index.
    idx = 1  # start from root node
    while idx < capacity:
        child_base = 2 * idx
        if tree[child_base] > prefixsum:
            idx = child_base
        else:
            prefixsum -= tree[child_base]
            idx = child_base + 1
    # Special case: The last element of ``self.value`` is neutral_element(0),
    # and caller wants to ``find_prefixsum_idx(root_value)``.
    # However, input prefixsum should be smaller than root_value.
    if idx == 2 * capacity - 1 and tree[idx] == neutral_element:
        tmp = idx
        while tmp >= capacity and tree[tmp] == neutral_element:
            tmp -= 1
        if tmp != capacity:
            idx = tmp
        else:
            raise ValueError("All elements in tree are the neutral_element(0), can't find non-zero element")
    assert (tree[idx] != neutral_element)
    return idx - capacity