File size: 55,258 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
from typing import List, Dict, Tuple
from ditk import logging
from copy import deepcopy
from easydict import EasyDict
from torch.utils.data import Dataset
from dataclasses import dataclass

import pickle
import easydict
import torch
import numpy as np

from ding.utils.bfs_helper import get_vi_sequence
from ding.utils import DATASET_REGISTRY, import_module, DatasetNormalizer
from ding.rl_utils import discount_cumsum


@dataclass
class DatasetStatistics:
    """
    Overview:
        Dataset statistics.
    """
    mean: np.ndarray  # obs
    std: np.ndarray  # obs
    action_bounds: np.ndarray


@DATASET_REGISTRY.register('naive')
class NaiveRLDataset(Dataset):
    """
    Overview:
        Naive RL dataset, which is used for offline RL algorithms.
    Interfaces:
        ``__init__``, ``__len__``, ``__getitem__``
    """

    def __init__(self, cfg) -> None:
        """
        Overview:
            Initialization method.
        Arguments:
            - cfg (:obj:`dict`): Config dict.
        """

        assert type(cfg) in [str, EasyDict], "invalid cfg type: {}".format(type(cfg))
        if isinstance(cfg, EasyDict):
            self._data_path = cfg.policy.collect.data_path
        elif isinstance(cfg, str):
            self._data_path = cfg
        with open(self._data_path, 'rb') as f:
            self._data: List[Dict[str, torch.Tensor]] = pickle.load(f)

    def __len__(self) -> int:
        """
        Overview:
            Get the length of the dataset.
        """

        return len(self._data)

    def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Get the item of the dataset.
        """

        return self._data[idx]


@DATASET_REGISTRY.register('d4rl')
class D4RLDataset(Dataset):
    """
    Overview:
        D4RL dataset, which is used for offline RL algorithms.
    Interfaces:
        ``__init__``, ``__len__``, ``__getitem__``
    Properties:
        - mean (:obj:`np.ndarray`): Mean of the dataset.
        - std (:obj:`np.ndarray`): Std of the dataset.
        - action_bounds (:obj:`np.ndarray`): Action bounds of the dataset.
        - statistics (:obj:`dict`): Statistics of the dataset.
    """

    def __init__(self, cfg: dict) -> None:
        """
        Overview:
            Initialization method.
        Arguments:
            - cfg (:obj:`dict`): Config dict.
        """

        import gym
        try:
            import d4rl  # register d4rl enviroments with open ai gym
        except ImportError:
            import sys
            logging.warning("not found d4rl env, please install it, refer to https://github.com/rail-berkeley/d4rl")
            sys.exit(1)

        # Init parameters
        data_path = cfg.policy.collect.get('data_path', None)
        env_id = cfg.env.env_id

        # Create the environment
        if data_path:
            d4rl.set_dataset_path(data_path)
        env = gym.make(env_id)
        dataset = d4rl.qlearning_dataset(env)
        self._cal_statistics(dataset, env)
        try:
            if cfg.env.norm_obs.use_norm and cfg.env.norm_obs.offline_stats.use_offline_stats:
                dataset = self._normalize_states(dataset)
        except (KeyError, AttributeError):
            # do not normalize
            pass
        self._data = []
        self._load_d4rl(dataset)

    @property
    def data(self) -> List:
        return self._data

    def __len__(self) -> int:
        """
        Overview:
            Get the length of the dataset.
        """

        return len(self._data)

    def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Get the item of the dataset.
        """

        return self._data[idx]

    def _load_d4rl(self, dataset: Dict[str, np.ndarray]) -> None:
        """
        Overview:
            Load the d4rl dataset.
        Arguments:
            - dataset (:obj:`Dict[str, np.ndarray]`): The d4rl dataset.
        """

        for i in range(len(dataset['observations'])):
            trans_data = {}
            trans_data['obs'] = torch.from_numpy(dataset['observations'][i])
            trans_data['next_obs'] = torch.from_numpy(dataset['next_observations'][i])
            trans_data['action'] = torch.from_numpy(dataset['actions'][i])
            trans_data['reward'] = torch.tensor(dataset['rewards'][i])
            trans_data['done'] = dataset['terminals'][i]
            self._data.append(trans_data)

    def _cal_statistics(self, dataset, env, eps=1e-3, add_action_buffer=True):
        """
        Overview:
            Calculate the statistics of the dataset.
        Arguments:
            - dataset (:obj:`Dict[str, np.ndarray]`): The d4rl dataset.
            - env (:obj:`gym.Env`): The environment.
            - eps (:obj:`float`): Epsilon.
        """

        self._mean = dataset['observations'].mean(0)
        self._std = dataset['observations'].std(0) + eps
        action_max = dataset['actions'].max(0)
        action_min = dataset['actions'].min(0)
        if add_action_buffer:
            action_buffer = 0.05 * (action_max - action_min)
            action_max = (action_max + action_buffer).clip(max=env.action_space.high)
            action_min = (action_min - action_buffer).clip(min=env.action_space.low)
        self._action_bounds = np.stack([action_min, action_max], axis=0)

    def _normalize_states(self, dataset):
        """
        Overview:
            Normalize the states.
        Arguments:
            - dataset (:obj:`Dict[str, np.ndarray]`): The d4rl dataset.
        """

        dataset['observations'] = (dataset['observations'] - self._mean) / self._std
        dataset['next_observations'] = (dataset['next_observations'] - self._mean) / self._std
        return dataset

    @property
    def mean(self):
        """
        Overview:
            Get the mean of the dataset.
        """

        return self._mean

    @property
    def std(self):
        """
        Overview:
            Get the std of the dataset.
        """

        return self._std

    @property
    def action_bounds(self) -> np.ndarray:
        """
        Overview:
            Get the action bounds of the dataset.
        """

        return self._action_bounds

    @property
    def statistics(self) -> dict:
        """
        Overview:
            Get the statistics of the dataset.
        """

        return DatasetStatistics(mean=self.mean, std=self.std, action_bounds=self.action_bounds)


@DATASET_REGISTRY.register('hdf5')
class HDF5Dataset(Dataset):
    """
    Overview:
        HDF5 dataset is saved in hdf5 format, which is used for offline RL algorithms.
        The hdf5 format is a common format for storing large numerical arrays in Python.
        For more details, please refer to https://support.hdfgroup.org/HDF5/.
    Interfaces:
        ``__init__``, ``__len__``, ``__getitem__``
    Properties:
        - mean (:obj:`np.ndarray`): Mean of the dataset.
        - std (:obj:`np.ndarray`): Std of the dataset.
        - action_bounds (:obj:`np.ndarray`): Action bounds of the dataset.
        - statistics (:obj:`dict`): Statistics of the dataset.
    """

    def __init__(self, cfg: dict) -> None:
        """
        Overview:
            Initialization method.
        Arguments:
            - cfg (:obj:`dict`): Config dict.
        """

        try:
            import h5py
        except ImportError:
            import sys
            logging.warning("not found h5py package, please install it trough `pip install h5py ")
            sys.exit(1)
        data_path = cfg.policy.collect.get('data_path', None)
        if 'dataset' in cfg:
            self.context_len = cfg.dataset.context_len
        else:
            self.context_len = 0
        data = h5py.File(data_path, 'r')
        self._load_data(data)
        self._cal_statistics()
        try:
            if cfg.env.norm_obs.use_norm and cfg.env.norm_obs.offline_stats.use_offline_stats:
                self._normalize_states()
        except (KeyError, AttributeError):
            # do not normalize
            pass

    def __len__(self) -> int:
        """
        Overview:
            Get the length of the dataset.
        """

        return len(self._data['obs']) - self.context_len

    def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Get the item of the dataset.
        Arguments:
            - idx (:obj:`int`): The index of the dataset.
        """

        if self.context_len == 0:  # for other offline RL algorithms
            return {k: self._data[k][idx] for k in self._data.keys()}
        else:  # for decision transformer
            block_size = self.context_len
            done_idx = idx + block_size
            idx = done_idx - block_size
            states = torch.as_tensor(
                np.array(self._data['obs'][idx:done_idx]), dtype=torch.float32
            ).view(block_size, -1)
            actions = torch.as_tensor(self._data['action'][idx:done_idx], dtype=torch.long)
            rtgs = torch.as_tensor(self._data['reward'][idx:done_idx, 0], dtype=torch.float32)
            timesteps = torch.as_tensor(range(idx, done_idx), dtype=torch.int64)
            traj_mask = torch.ones(self.context_len, dtype=torch.long)
            return timesteps, states, actions, rtgs, traj_mask

    def _load_data(self, dataset: Dict[str, np.ndarray]) -> None:
        """
        Overview:
            Load the dataset.
        Arguments:
            - dataset (:obj:`Dict[str, np.ndarray]`): The dataset.
        """

        self._data = {}
        for k in dataset.keys():
            logging.info(f'Load {k} data.')
            self._data[k] = dataset[k][:]

    def _cal_statistics(self, eps: float = 1e-3):
        """
        Overview:
            Calculate the statistics of the dataset.
        Arguments:
            - eps (:obj:`float`): Epsilon.
        """

        self._mean = self._data['obs'].mean(0)
        self._std = self._data['obs'].std(0) + eps
        action_max = self._data['action'].max(0)
        action_min = self._data['action'].min(0)
        buffer = 0.05 * (action_max - action_min)
        action_max = action_max.astype(float) + buffer
        action_min = action_max.astype(float) - buffer
        self._action_bounds = np.stack([action_min, action_max], axis=0)

    def _normalize_states(self):
        """
        Overview:
            Normalize the states.
        """

        self._data['obs'] = (self._data['obs'] - self._mean) / self._std
        self._data['next_obs'] = (self._data['next_obs'] - self._mean) / self._std

    @property
    def mean(self):
        """
        Overview:
            Get the mean of the dataset.
        """

        return self._mean

    @property
    def std(self):
        """
        Overview:
            Get the std of the dataset.
        """

        return self._std

    @property
    def action_bounds(self) -> np.ndarray:
        """
        Overview:
            Get the action bounds of the dataset.
        """

        return self._action_bounds

    @property
    def statistics(self) -> dict:
        """
        Overview:
            Get the statistics of the dataset.
        """

        return DatasetStatistics(mean=self.mean, std=self.std, action_bounds=self.action_bounds)


@DATASET_REGISTRY.register('d4rl_trajectory')
class D4RLTrajectoryDataset(Dataset):
    """
    Overview:
        D4RL trajectory dataset, which is used for offline RL algorithms.
    Interfaces:
        ``__init__``, ``__len__``, ``__getitem__``
    """

    # from infos.py from official d4rl github repo
    REF_MIN_SCORE = {
        'halfcheetah': -280.178953,
        'walker2d': 1.629008,
        'hopper': -20.272305,
    }

    REF_MAX_SCORE = {
        'halfcheetah': 12135.0,
        'walker2d': 4592.3,
        'hopper': 3234.3,
    }

    # calculated from d4rl datasets
    D4RL_DATASET_STATS = {
        'halfcheetah-medium-v2': {
            'state_mean': [
                -0.06845773756504059, 0.016414547339081764, -0.18354906141757965, -0.2762460708618164,
                -0.34061527252197266, -0.09339715540409088, -0.21321271359920502, -0.0877423882484436,
                5.173007488250732, -0.04275195300579071, -0.036108363419771194, 0.14053793251514435,
                0.060498327016830444, 0.09550975263118744, 0.06739100068807602, 0.005627387668937445,
                0.013382787816226482
            ],
            'state_std': [
                0.07472999393939972, 0.3023499846458435, 0.30207309126853943, 0.34417077898979187, 0.17619241774082184,
                0.507205605506897, 0.2567007839679718, 0.3294812738895416, 1.2574149370193481, 0.7600541710853577,
                1.9800915718078613, 6.565362453460693, 7.466367721557617, 4.472222805023193, 10.566964149475098,
                5.671932697296143, 7.4982590675354
            ]
        },
        'halfcheetah-medium-replay-v2': {
            'state_mean': [
                -0.12880703806877136, 0.3738119602203369, -0.14995987713336945, -0.23479078710079193,
                -0.2841278612613678, -0.13096535205841064, -0.20157982409000397, -0.06517726927995682,
                3.4768247604370117, -0.02785065770149231, -0.015035249292850494, 0.07697279006242752,
                0.01266712136566639, 0.027325302362442017, 0.02316424623131752, 0.010438721626996994,
                -0.015839405357837677
            ],
            'state_std': [
                0.17019015550613403, 1.284424901008606, 0.33442774415016174, 0.3672759234905243, 0.26092398166656494,
                0.4784106910228729, 0.3181420564651489, 0.33552637696266174, 2.0931615829467773, 0.8037433624267578,
                1.9044333696365356, 6.573209762573242, 7.572863578796387, 5.069749355316162, 9.10555362701416,
                6.085654258728027, 7.25300407409668
            ]
        },
        'halfcheetah-medium-expert-v2': {
            'state_mean': [
                -0.05667462572455406, 0.024369969964027405, -0.061670560389757156, -0.22351515293121338,
                -0.2675151228904724, -0.07545716315507889, -0.05809682980179787, -0.027675075456500053,
                8.110626220703125, -0.06136331334710121, -0.17986927926540375, 0.25175222754478455, 0.24186332523822784,
                0.2519369423389435, 0.5879552960395813, -0.24090635776519775, -0.030184272676706314
            ],
            'state_std': [
                0.06103534251451492, 0.36054104566574097, 0.45544400811195374, 0.38476887345314026, 0.2218363732099533,
                0.5667523741722107, 0.3196682929992676, 0.2852923572063446, 3.443821907043457, 0.6728139519691467,
                1.8616976737976074, 9.575807571411133, 10.029894828796387, 5.903450012207031, 12.128185272216797,
                6.4811787605285645, 6.378620147705078
            ]
        },
        'walker2d-medium-v2': {
            'state_mean': [
                1.218966007232666, 0.14163373410701752, -0.03704913705587387, -0.13814310729503632, 0.5138224363327026,
                -0.04719110205769539, -0.47288352251052856, 0.042254164814949036, 2.3948874473571777,
                -0.03143199160695076, 0.04466355964541435, -0.023907244205474854, -0.1013401448726654,
                0.09090937674045563, -0.004192637279629707, -0.12120571732521057, -0.5497063994407654
            ],
            'state_std': [
                0.12311358004808426, 0.3241879940032959, 0.11456084251403809, 0.2623065710067749, 0.5640279054641724,
                0.2271878570318222, 0.3837319612503052, 0.7373676896095276, 1.2387926578521729, 0.798020601272583,
                1.5664079189300537, 1.8092705011367798, 3.025604248046875, 4.062486171722412, 1.4586567878723145,
                3.7445690631866455, 5.5851287841796875
            ]
        },
        'walker2d-medium-replay-v2': {
            'state_mean': [
                1.209364652633667, 0.13264022767543793, -0.14371201395988464, -0.2046516090631485, 0.5577612519264221,
                -0.03231537342071533, -0.2784661054611206, 0.19130706787109375, 1.4701707363128662,
                -0.12504704296588898, 0.0564953051507473, -0.09991033375263214, -0.340340256690979, 0.03546293452382088,
                -0.08934258669614792, -0.2992438077926636, -0.5984178185462952
            ],
            'state_std': [
                0.11929835379123688, 0.3562574088573456, 0.25852200388908386, 0.42075422406196594, 0.5202291011810303,
                0.15685082972049713, 0.36770978569984436, 0.7161387801170349, 1.3763766288757324, 0.8632221817970276,
                2.6364643573760986, 3.0134117603302, 3.720684051513672, 4.867283821105957, 2.6681625843048096,
                3.845186948776245, 5.4768385887146
            ]
        },
        'walker2d-medium-expert-v2': {
            'state_mean': [
                1.2294334173202515, 0.16869689524173737, -0.07089081406593323, -0.16197483241558075,
                0.37101927399635315, -0.012209027074277401, -0.42461398243904114, 0.18986578285694122,
                3.162475109100342, -0.018092676997184753, 0.03496946766972542, -0.013921679928898811,
                -0.05937029421329498, -0.19549426436424255, -0.0019200450042262673, -0.062483321875333786,
                -0.27366524934768677
            ],
            'state_std': [
                0.09932824969291687, 0.25981399416923523, 0.15062759816646576, 0.24249176681041718, 0.6758718490600586,
                0.1650741547346115, 0.38140663504600525, 0.6962361335754395, 1.3501490354537964, 0.7641991376876831,
                1.534574270248413, 2.1785972118377686, 3.276582717895508, 4.766193866729736, 1.1716983318328857,
                4.039782524108887, 5.891613960266113
            ]
        },
        'hopper-medium-v2': {
            'state_mean': [
                1.311279058456421, -0.08469521254301071, -0.5382719039916992, -0.07201576232910156, 0.04932365566492081,
                2.1066856384277344, -0.15017354488372803, 0.008783451281487942, -0.2848185896873474,
                -0.18540096282958984, -0.28461286425590515
            ],
            'state_std': [
                0.17790751159191132, 0.05444620922207832, 0.21297138929367065, 0.14530418813228607, 0.6124444007873535,
                0.8517446517944336, 1.4515252113342285, 0.6751695871353149, 1.5362390279769897, 1.616074562072754,
                5.607253551483154
            ]
        },
        'hopper-medium-replay-v2': {
            'state_mean': [
                1.2305138111114502, -0.04371410980820656, -0.44542956352233887, -0.09370097517967224,
                0.09094487875699997, 1.3694725036621094, -0.19992674887180328, -0.022861352190375328,
                -0.5287045240402222, -0.14465883374214172, -0.19652697443962097
            ],
            'state_std': [
                0.1756512075662613, 0.0636928603053093, 0.3438323438167572, 0.19566889107227325, 0.5547984838485718,
                1.051029920578003, 1.158307671546936, 0.7963128685951233, 1.4802359342575073, 1.6540331840515137,
                5.108601093292236
            ]
        },
        'hopper-medium-expert-v2': {
            'state_mean': [
                1.3293815851211548, -0.09836531430482864, -0.5444297790527344, -0.10201650857925415,
                0.02277466468513012, 2.3577215671539307, -0.06349576264619827, -0.00374026270583272,
                -0.1766270101070404, -0.11862941086292267, -0.12097819894552231
            ],
            'state_std': [
                0.17012375593185425, 0.05159067362546921, 0.18141433596611023, 0.16430604457855225, 0.6023368239402771,
                0.7737284898757935, 1.4986555576324463, 0.7483318448066711, 1.7953159809112549, 2.0530025959014893,
                5.725032806396484
            ]
        },
    }

    def __init__(self, cfg: dict) -> None:
        """
        Overview:
            Initialization method.
        Arguments:
            - cfg (:obj:`dict`): Config dict.
        """

        dataset_path = cfg.dataset.data_dir_prefix
        rtg_scale = cfg.dataset.rtg_scale
        self.context_len = cfg.dataset.context_len
        self.env_type = cfg.dataset.env_type

        if 'hdf5' in dataset_path:  # for mujoco env
            try:
                import h5py
                import collections
            except ImportError:
                import sys
                logging.warning("not found h5py package, please install it trough `pip install h5py ")
                sys.exit(1)
            dataset = h5py.File(dataset_path, 'r')

            N = dataset['rewards'].shape[0]
            data_ = collections.defaultdict(list)

            use_timeouts = False
            if 'timeouts' in dataset:
                use_timeouts = True

            episode_step = 0
            paths = []
            for i in range(N):
                done_bool = bool(dataset['terminals'][i])
                if use_timeouts:
                    final_timestep = dataset['timeouts'][i]
                else:
                    final_timestep = (episode_step == 1000 - 1)
                for k in ['observations', 'actions', 'rewards', 'terminals']:
                    data_[k].append(dataset[k][i])
                if done_bool or final_timestep:
                    episode_step = 0
                    episode_data = {}
                    for k in data_:
                        episode_data[k] = np.array(data_[k])
                    paths.append(episode_data)
                    data_ = collections.defaultdict(list)
                episode_step += 1

            self.trajectories = paths

            # calculate state mean and variance and returns_to_go for all traj
            states = []
            for traj in self.trajectories:
                traj_len = traj['observations'].shape[0]
                states.append(traj['observations'])
                # calculate returns to go and rescale them
                traj['returns_to_go'] = discount_cumsum(traj['rewards'], 1.0) / rtg_scale

            # used for input normalization
            states = np.concatenate(states, axis=0)
            self.state_mean, self.state_std = np.mean(states, axis=0), np.std(states, axis=0) + 1e-6

            # normalize states
            for traj in self.trajectories:
                traj['observations'] = (traj['observations'] - self.state_mean) / self.state_std

        elif 'pkl' in dataset_path:
            if 'dqn' in dataset_path:
                # load dataset
                with open(dataset_path, 'rb') as f:
                    self.trajectories = pickle.load(f)

                if isinstance(self.trajectories[0], list):
                    # for our collected dataset, e.g. cartpole/lunarlander case
                    trajectories_tmp = []

                    original_keys = ['obs', 'next_obs', 'action', 'reward']
                    keys = ['observations', 'next_observations', 'actions', 'rewards']
                    trajectories_tmp = [
                        {
                            key: np.stack(
                                [
                                    self.trajectories[eps_index][transition_index][o_key]
                                    for transition_index in range(len(self.trajectories[eps_index]))
                                ],
                                axis=0
                            )
                            for key, o_key in zip(keys, original_keys)
                        } for eps_index in range(len(self.trajectories))
                    ]
                    self.trajectories = trajectories_tmp

                states = []
                for traj in self.trajectories:
                    # traj_len = traj['observations'].shape[0]
                    states.append(traj['observations'])
                    # calculate returns to go and rescale them
                    traj['returns_to_go'] = discount_cumsum(traj['rewards'], 1.0) / rtg_scale

                # used for input normalization
                states = np.concatenate(states, axis=0)
                self.state_mean, self.state_std = np.mean(states, axis=0), np.std(states, axis=0) + 1e-6

                # normalize states
                for traj in self.trajectories:
                    traj['observations'] = (traj['observations'] - self.state_mean) / self.state_std
            else:
                # load dataset
                with open(dataset_path, 'rb') as f:
                    self.trajectories = pickle.load(f)

                states = []
                for traj in self.trajectories:
                    states.append(traj['observations'])
                    # calculate returns to go and rescale them
                    traj['returns_to_go'] = discount_cumsum(traj['rewards'], 1.0) / rtg_scale

                # used for input normalization
                states = np.concatenate(states, axis=0)
                self.state_mean, self.state_std = np.mean(states, axis=0), np.std(states, axis=0) + 1e-6

                # normalize states
                for traj in self.trajectories:
                    traj['observations'] = (traj['observations'] - self.state_mean) / self.state_std
        else:
            # -- load data from memory (make more efficient)
            obss = []
            actions = []
            returns = [0]
            done_idxs = []
            stepwise_returns = []

            transitions_per_buffer = np.zeros(50, dtype=int)
            num_trajectories = 0
            while len(obss) < cfg.dataset.num_steps:
                buffer_num = np.random.choice(np.arange(50 - cfg.dataset.num_buffers, 50), 1)[0]
                i = transitions_per_buffer[buffer_num]
                frb = FixedReplayBuffer(
                    data_dir=cfg.dataset.data_dir_prefix + '/1/replay_logs',
                    replay_suffix=buffer_num,
                    observation_shape=(84, 84),
                    stack_size=4,
                    update_horizon=1,
                    gamma=0.99,
                    observation_dtype=np.uint8,
                    batch_size=32,
                    replay_capacity=100000
                )
                if frb._loaded_buffers:
                    done = False
                    curr_num_transitions = len(obss)
                    trajectories_to_load = cfg.dataset.trajectories_per_buffer
                    while not done:
                        states, ac, ret, next_states, next_action, next_reward, terminal, indices = \
                        frb.sample_transition_batch(batch_size=1, indices=[i])
                        states = states.transpose((0, 3, 1, 2))[0]  # (1, 84, 84, 4) --> (4, 84, 84)
                        obss.append(states)
                        actions.append(ac[0])
                        stepwise_returns.append(ret[0])
                        if terminal[0]:
                            done_idxs.append(len(obss))
                            returns.append(0)
                            if trajectories_to_load == 0:
                                done = True
                            else:
                                trajectories_to_load -= 1
                        returns[-1] += ret[0]
                        i += 1
                        if i >= 100000:
                            obss = obss[:curr_num_transitions]
                            actions = actions[:curr_num_transitions]
                            stepwise_returns = stepwise_returns[:curr_num_transitions]
                            returns[-1] = 0
                            i = transitions_per_buffer[buffer_num]
                            done = True
                    num_trajectories += (cfg.dataset.trajectories_per_buffer - trajectories_to_load)
                    transitions_per_buffer[buffer_num] = i

            actions = np.array(actions)
            returns = np.array(returns)
            stepwise_returns = np.array(stepwise_returns)
            done_idxs = np.array(done_idxs)

            # -- create reward-to-go dataset
            start_index = 0
            rtg = np.zeros_like(stepwise_returns)
            for i in done_idxs:
                i = int(i)
                curr_traj_returns = stepwise_returns[start_index:i]
                for j in range(i - 1, start_index - 1, -1):  # start from i-1
                    rtg_j = curr_traj_returns[j - start_index:i - start_index]
                    rtg[j] = sum(rtg_j)
                start_index = i

            # -- create timestep dataset
            start_index = 0
            timesteps = np.zeros(len(actions) + 1, dtype=int)
            for i in done_idxs:
                i = int(i)
                timesteps[start_index:i + 1] = np.arange(i + 1 - start_index)
                start_index = i + 1

            self.obss = obss
            self.actions = actions
            self.done_idxs = done_idxs
            self.rtgs = rtg
            self.timesteps = timesteps
            # return obss, actions, returns, done_idxs, rtg, timesteps

    def get_max_timestep(self) -> int:
        """
        Overview:
            Get the max timestep of the dataset.
        """

        return max(self.timesteps)

    def get_state_stats(self) -> Tuple[np.ndarray, np.ndarray]:
        """
        Overview:
            Get the state mean and std of the dataset.
        """

        return deepcopy(self.state_mean), deepcopy(self.state_std)

    def get_d4rl_dataset_stats(self, env_d4rl_name: str) -> Dict[str, list]:
        """
        Overview:
            Get the d4rl dataset stats.
        Arguments:
            - env_d4rl_name (:obj:`str`): The d4rl env name.
        """

        return self.D4RL_DATASET_STATS[env_d4rl_name]

    def __len__(self) -> int:
        """
        Overview:
            Get the length of the dataset.
        """

        if self.env_type != 'atari':
            return len(self.trajectories)
        else:
            return len(self.obss) - self.context_len

    def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Overview:
            Get the item of the dataset.
        Arguments:
            - idx (:obj:`int`): The index of the dataset.
        """

        if self.env_type != 'atari':
            traj = self.trajectories[idx]
            traj_len = traj['observations'].shape[0]

            if traj_len > self.context_len:
                # sample random index to slice trajectory
                si = np.random.randint(0, traj_len - self.context_len)

                states = torch.from_numpy(traj['observations'][si:si + self.context_len])
                actions = torch.from_numpy(traj['actions'][si:si + self.context_len])
                returns_to_go = torch.from_numpy(traj['returns_to_go'][si:si + self.context_len])
                timesteps = torch.arange(start=si, end=si + self.context_len, step=1)

                # all ones since no padding
                traj_mask = torch.ones(self.context_len, dtype=torch.long)

            else:
                padding_len = self.context_len - traj_len

                # padding with zeros
                states = torch.from_numpy(traj['observations'])
                states = torch.cat(
                    [states, torch.zeros(([padding_len] + list(states.shape[1:])), dtype=states.dtype)], dim=0
                )

                actions = torch.from_numpy(traj['actions'])
                actions = torch.cat(
                    [actions, torch.zeros(([padding_len] + list(actions.shape[1:])), dtype=actions.dtype)], dim=0
                )

                returns_to_go = torch.from_numpy(traj['returns_to_go'])
                returns_to_go = torch.cat(
                    [
                        returns_to_go,
                        torch.zeros(([padding_len] + list(returns_to_go.shape[1:])), dtype=returns_to_go.dtype)
                    ],
                    dim=0
                )

                timesteps = torch.arange(start=0, end=self.context_len, step=1)

                traj_mask = torch.cat(
                    [torch.ones(traj_len, dtype=torch.long),
                     torch.zeros(padding_len, dtype=torch.long)], dim=0
                )
            return timesteps, states, actions, returns_to_go, traj_mask
        else:  # mean cost less than 0.001s
            block_size = self.context_len
            done_idx = idx + block_size
            for i in self.done_idxs:
                if i > idx:  # first done_idx greater than idx
                    done_idx = min(int(i), done_idx)
                    break
            idx = done_idx - block_size
            states = torch.as_tensor(
                np.array(self.obss[idx:done_idx]), dtype=torch.float32
            ).view(block_size, -1)  # (block_size, 4*84*84)
            states = states / 255.
            actions = torch.as_tensor(self.actions[idx:done_idx], dtype=torch.long).unsqueeze(1)  # (block_size, 1)
            rtgs = torch.as_tensor(self.rtgs[idx:done_idx], dtype=torch.float32).unsqueeze(1)
            timesteps = torch.as_tensor(self.timesteps[idx:idx + 1], dtype=torch.int64).unsqueeze(1)
            traj_mask = torch.ones(self.context_len, dtype=torch.long)
            return timesteps, states, actions, rtgs, traj_mask


@DATASET_REGISTRY.register('d4rl_diffuser')
class D4RLDiffuserDataset(Dataset):
    """
    Overview:
        D4RL diffuser dataset, which is used for offline RL algorithms.
    Interfaces:
        ``__init__``, ``__len__``, ``__getitem__``
    """

    def __init__(self, dataset_path: str, context_len: int, rtg_scale: float) -> None:
        """
        Overview:
            Initialization method of D4RLDiffuserDataset.
        Arguments:
            - dataset_path (:obj:`str`): The dataset path.
            - context_len (:obj:`int`): The length of the context.
            - rtg_scale (:obj:`float`): The scale of the returns to go.
        """

        self.context_len = context_len

        # load dataset
        with open(dataset_path, 'rb') as f:
            self.trajectories = pickle.load(f)

        if isinstance(self.trajectories[0], list):
            # for our collected dataset, e.g. cartpole/lunarlander case
            trajectories_tmp = []

            original_keys = ['obs', 'next_obs', 'action', 'reward']
            keys = ['observations', 'next_observations', 'actions', 'rewards']
            for key, o_key in zip(keys, original_keys):
                trajectories_tmp = [
                    {
                        key: np.stack(
                            [
                                self.trajectories[eps_index][transition_index][o_key]
                                for transition_index in range(len(self.trajectories[eps_index]))
                            ],
                            axis=0
                        )
                    } for eps_index in range(len(self.trajectories))
                ]
            self.trajectories = trajectories_tmp

        states = []
        for traj in self.trajectories:
            traj_len = traj['observations'].shape[0]
            states.append(traj['observations'])
            # calculate returns to go and rescale them
            traj['returns_to_go'] = discount_cumsum(traj['rewards'], 1.0) / rtg_scale

        # used for input normalization
        states = np.concatenate(states, axis=0)
        self.state_mean, self.state_std = np.mean(states, axis=0), np.std(states, axis=0) + 1e-6

        # normalize states
        for traj in self.trajectories:
            traj['observations'] = (traj['observations'] - self.state_mean) / self.state_std


class FixedReplayBuffer(object):
    """
    Overview:
        Object composed of a list of OutofGraphReplayBuffers.
    Interfaces:
        ``__init__``, ``get_transition_elements``, ``sample_transition_batch``
    """

    def __init__(self, data_dir, replay_suffix, *args, **kwargs):  # pylint: disable=keyword-arg-before-vararg
        """
        Overview:
            Initialize the FixedReplayBuffer class.
        Arguments:
            - data_dir (:obj:`str`): log Directory from which to load the replay buffer.
            - replay_suffix (:obj:`int`): If not None, then only load the replay buffer \
                corresponding to the specific suffix in data directory.
            - args (:obj:`list`): Arbitrary extra arguments.
            - kwargs (:obj:`dict`): Arbitrary keyword arguments.

        """

        self._args = args
        self._kwargs = kwargs
        self._data_dir = data_dir
        self._loaded_buffers = False
        self.add_count = np.array(0)
        self._replay_suffix = replay_suffix
        if not self._loaded_buffers:
            if replay_suffix is not None:
                assert replay_suffix >= 0, 'Please pass a non-negative replay suffix'
                self.load_single_buffer(replay_suffix)
            else:
                pass
            # self._load_replay_buffers(num_buffers=50)

    def load_single_buffer(self, suffix):
        """
        Overview:
            Load a single replay buffer.
        Arguments:
            - suffix (:obj:`int`): The suffix of the replay buffer.
        """

        replay_buffer = self._load_buffer(suffix)
        if replay_buffer is not None:
            self._replay_buffers = [replay_buffer]
            self.add_count = replay_buffer.add_count
            self._num_replay_buffers = 1
            self._loaded_buffers = True

    def _load_buffer(self, suffix):
        """
        Overview:
            Loads a OutOfGraphReplayBuffer replay buffer.
        Arguments:
            - suffix (:obj:`int`): The suffix of the replay buffer.
        """

        try:
            from dopamine.replay_memory import circular_replay_buffer
            STORE_FILENAME_PREFIX = circular_replay_buffer.STORE_FILENAME_PREFIX
            # pytype: disable=attribute-error
            replay_buffer = circular_replay_buffer.OutOfGraphReplayBuffer(*self._args, **self._kwargs)
            replay_buffer.load(self._data_dir, suffix)
            # pytype: enable=attribute-error
            return replay_buffer
        # except tf.errors.NotFoundError:
        except:
            raise ('can not load')

    def get_transition_elements(self):
        """
        Overview:
            Returns the transition elements.
        """

        return self._replay_buffers[0].get_transition_elements()

    def sample_transition_batch(self, batch_size=None, indices=None):
        """
        Overview:
            Returns a batch of transitions (including any extra contents).
        Arguments:
            - batch_size (:obj:`int`): The batch size.
            - indices (:obj:`list`): The indices of the batch.
        """

        buffer_index = np.random.randint(self._num_replay_buffers)
        return self._replay_buffers[buffer_index].sample_transition_batch(batch_size=batch_size, indices=indices)


class PCDataset(Dataset):
    """
    Overview:
        Dataset for Procedure Cloning.
    Interfaces:
        ``__init__``, ``__len__``, ``__getitem__``
    """

    def __init__(self, all_data):
        """
        Overview:
            Initialization method of PCDataset.
        Arguments:
            - all_data (:obj:`tuple`): The tuple of all data.
        """

        self._data = all_data

    def __getitem__(self, item):
        """
        Overview:
            Get the item of the dataset.
        Arguments:
            - item (:obj:`int`): The index of the dataset.
        """

        return {'obs': self._data[0][item], 'bfs_in': self._data[1][item], 'bfs_out': self._data[2][item]}

    def __len__(self):
        """
        Overview:
            Get the length of the dataset.
        """

        return self._data[0].shape[0]


def load_bfs_datasets(train_seeds=1, test_seeds=5):
    """
    Overview:
        Load BFS datasets.
    Arguments:
        - train_seeds (:obj:`int`): The number of train seeds.
        - test_seeds (:obj:`int`): The number of test seeds.
    """

    from dizoo.maze.envs import Maze

    def load_env(seed):
        ccc = easydict.EasyDict({'size': 16})
        e = Maze(ccc)
        e.seed(seed)
        e.reset()
        return e

    envs = [load_env(i) for i in range(train_seeds + test_seeds)]

    observations_train = []
    observations_test = []
    bfs_input_maps_train = []
    bfs_input_maps_test = []
    bfs_output_maps_train = []
    bfs_output_maps_test = []
    for idx, env in enumerate(envs):
        if idx < train_seeds:
            observations = observations_train
            bfs_input_maps = bfs_input_maps_train
            bfs_output_maps = bfs_output_maps_train
        else:
            observations = observations_test
            bfs_input_maps = bfs_input_maps_test
            bfs_output_maps = bfs_output_maps_test

        start_obs = env.process_states(env._get_obs(), env.get_maze_map())
        _, track_back = get_vi_sequence(env, start_obs)
        env_observations = torch.stack([track_back[i][0] for i in range(len(track_back))], dim=0)

        for i in range(env_observations.shape[0]):
            bfs_sequence, _ = get_vi_sequence(env, env_observations[i].numpy().astype(np.int32))  # [L, W, W]
            bfs_input_map = env.n_action * np.ones([env.size, env.size], dtype=np.long)

            for j in range(bfs_sequence.shape[0]):
                bfs_input_maps.append(torch.from_numpy(bfs_input_map))
                bfs_output_maps.append(torch.from_numpy(bfs_sequence[j]))
                observations.append(env_observations[i])
                bfs_input_map = bfs_sequence[j]

    train_data = PCDataset(
        (
            torch.stack(observations_train, dim=0),
            torch.stack(bfs_input_maps_train, dim=0),
            torch.stack(bfs_output_maps_train, dim=0),
        )
    )
    test_data = PCDataset(
        (
            torch.stack(observations_test, dim=0),
            torch.stack(bfs_input_maps_test, dim=0),
            torch.stack(bfs_output_maps_test, dim=0),
        )
    )

    return train_data, test_data


@DATASET_REGISTRY.register('bco')
class BCODataset(Dataset):
    """
    Overview:
        Dataset for Behavioral Cloning from Observation.
    Interfaces:
        ``__init__``, ``__len__``, ``__getitem__``
    Properties:
        - obs (:obj:`np.ndarray`): The observation array.
        - action (:obj:`np.ndarray`): The action array.
    """

    def __init__(self, data=None):
        """
        Overview:
            Initialization method of BCODataset.
        Arguments:
            - data (:obj:`dict`): The data dict.
        """

        if data is None:
            raise ValueError('Dataset can not be empty!')
        else:
            self._data = data

    def __len__(self):
        """
        Overview:
            Get the length of the dataset.
        """

        return len(self._data['obs'])

    def __getitem__(self, idx):
        """
        Overview:
            Get the item of the dataset.
        Arguments:
            - idx (:obj:`int`): The index of the dataset.
        """

        return {k: self._data[k][idx] for k in self._data.keys()}

    @property
    def obs(self):
        """
        Overview:
            Get the observation array.
        """

        return self._data['obs']

    @property
    def action(self):
        """
        Overview:
            Get the action array.
        """

        return self._data['action']


@DATASET_REGISTRY.register('diffuser_traj')
class SequenceDataset(torch.utils.data.Dataset):
    """
    Overview:
        Dataset for diffuser.
    Interfaces:
        ``__init__``, ``__len__``, ``__getitem__``
    """

    def __init__(self, cfg):
        """
        Overview:
            Initialization method of SequenceDataset.
        Arguments:
            - cfg (:obj:`dict`): The config dict.
        """

        import gym

        env_id = cfg.env.env_id
        data_path = cfg.policy.collect.get('data_path', None)
        env = gym.make(env_id)

        dataset = env.get_dataset()

        self.returns_scale = cfg.env.returns_scale
        self.horizon = cfg.env.horizon
        self.max_path_length = cfg.env.max_path_length
        self.discount = cfg.policy.learn.discount_factor
        self.discounts = self.discount ** np.arange(self.max_path_length)[:, None]
        self.use_padding = cfg.env.use_padding
        self.include_returns = cfg.env.include_returns
        self.env_id = cfg.env.env_id
        itr = self.sequence_dataset(env, dataset)
        self.n_episodes = 0

        fields = {}
        for k in dataset.keys():
            if 'metadata' in k:
                continue
            fields[k] = []
        fields['path_lengths'] = []

        for i, episode in enumerate(itr):
            path_length = len(episode['observations'])
            assert path_length <= self.max_path_length
            fields['path_lengths'].append(path_length)
            for key, val in episode.items():
                if key not in fields:
                    fields[key] = []
                if val.ndim < 2:
                    val = np.expand_dims(val, axis=-1)
                shape = (self.max_path_length, val.shape[-1])
                arr = np.zeros(shape, dtype=np.float32)
                arr[:path_length] = val
                fields[key].append(arr)
            if episode['terminals'].any() and cfg.env.termination_penalty and 'timeouts' in episode:
                assert not episode['timeouts'].any(), 'Penalized a timeout episode for early termination'
                fields['rewards'][-1][path_length - 1] += cfg.env.termination_penalty
            self.n_episodes += 1

        for k in fields.keys():
            fields[k] = np.array(fields[k])

        self.normalizer = DatasetNormalizer(fields, cfg.policy.normalizer, path_lengths=fields['path_lengths'])
        self.indices = self.make_indices(fields['path_lengths'], self.horizon)

        self.observation_dim = cfg.env.obs_dim
        self.action_dim = cfg.env.action_dim
        self.fields = fields
        self.normalize()
        self.normed = False
        if cfg.env.normed:
            self.vmin, self.vmax = self._get_bounds()
            self.normed = True

        # shapes = {key: val.shape for key, val in self.fields.items()}
        # print(f'[ datasets/mujoco ] Dataset fields: {shapes}')

    def sequence_dataset(self, env, dataset=None):
        """
        Overview:
            Sequence the dataset.
        Arguments:
            - env (:obj:`gym.Env`): The gym env.
        """

        import collections
        N = dataset['rewards'].shape[0]
        if 'maze2d' in env.spec.id:
            dataset = self.maze2d_set_terminals(env, dataset)
        data_ = collections.defaultdict(list)

        # The newer version of the dataset adds an explicit
        # timeouts field. Keep old method for backwards compatability.
        use_timeouts = 'timeouts' in dataset

        episode_step = 0
        for i in range(N):
            done_bool = bool(dataset['terminals'][i])
            if use_timeouts:
                final_timestep = dataset['timeouts'][i]
            else:
                final_timestep = (episode_step == env._max_episode_steps - 1)

            for k in dataset:
                if 'metadata' in k:
                    continue
                data_[k].append(dataset[k][i])

            if done_bool or final_timestep:
                episode_step = 0
                episode_data = {}
                for k in data_:
                    episode_data[k] = np.array(data_[k])
                if 'maze2d' in env.spec.id:
                    episode_data = self.process_maze2d_episode(episode_data)
                yield episode_data
                data_ = collections.defaultdict(list)

            episode_step += 1

    def maze2d_set_terminals(self, env, dataset):
        """
        Overview:
            Set the terminals for maze2d.
        Arguments:
            - env (:obj:`gym.Env`): The gym env.
            - dataset (:obj:`dict`): The dataset dict.
        """

        goal = env.get_target()
        threshold = 0.5

        xy = dataset['observations'][:, :2]
        distances = np.linalg.norm(xy - goal, axis=-1)
        at_goal = distances < threshold
        timeouts = np.zeros_like(dataset['timeouts'])

        # timeout at time t iff
        #      at goal at time t and
        #      not at goal at time t + 1
        timeouts[:-1] = at_goal[:-1] * ~at_goal[1:]

        timeout_steps = np.where(timeouts)[0]
        path_lengths = timeout_steps[1:] - timeout_steps[:-1]

        print(
            f'[ utils/preprocessing ] Segmented {env.spec.id} | {len(path_lengths)} paths | '
            f'min length: {path_lengths.min()} | max length: {path_lengths.max()}'
        )

        dataset['timeouts'] = timeouts
        return dataset

    def process_maze2d_episode(self, episode):
        """
        Overview:
            Process the maze2d episode, adds in `next_observations` field to episode.
        Arguments:
            - episode (:obj:`dict`): The episode dict.
        """

        assert 'next_observations' not in episode
        length = len(episode['observations'])
        next_observations = episode['observations'][1:].copy()
        for key, val in episode.items():
            episode[key] = val[:-1]
        episode['next_observations'] = next_observations
        return episode

    def normalize(self, keys=['observations', 'actions']):
        """
        Overview:
            Normalize the dataset, normalize fields that will be predicted by the diffusion model
        Arguments:
            - keys (:obj:`list`): The list of keys.
        """

        for key in keys:
            array = self.fields[key].reshape(self.n_episodes * self.max_path_length, -1)
            normed = self.normalizer.normalize(array, key)
            self.fields[f'normed_{key}'] = normed.reshape(self.n_episodes, self.max_path_length, -1)

    def make_indices(self, path_lengths, horizon):
        """
        Overview:
            Make indices for sampling from dataset. Each index maps to a datapoint.
        Arguments:
            - path_lengths (:obj:`np.ndarray`): The path length array.
            - horizon (:obj:`int`): The horizon.
        """

        indices = []
        for i, path_length in enumerate(path_lengths):
            max_start = min(path_length - 1, self.max_path_length - horizon)
            if not self.use_padding:
                max_start = min(max_start, path_length - horizon)
            for start in range(max_start):
                end = start + horizon
                indices.append((i, start, end))
        indices = np.array(indices)
        return indices

    def get_conditions(self, observations):
        """
        Overview:
            Get the conditions on current observation for planning.
        Arguments:
            - observations (:obj:`np.ndarray`): The observation array.
        """

        if 'maze2d' in self.env_id:
            return {'condition_id': [0, self.horizon - 1], 'condition_val': [observations[0], observations[-1]]}
        else:
            return {'condition_id': [0], 'condition_val': [observations[0]]}

    def __len__(self):
        """
        Overview:
            Get the length of the dataset.
        """

        return len(self.indices)

    def _get_bounds(self):
        """
        Overview:
            Get the bounds of the dataset.
        """

        print('[ datasets/sequence ] Getting value dataset bounds...', end=' ', flush=True)
        vmin = np.inf
        vmax = -np.inf
        for i in range(len(self.indices)):
            value = self.__getitem__(i)['returns'].item()
            vmin = min(value, vmin)
            vmax = max(value, vmax)
        print('✓')
        return vmin, vmax

    def normalize_value(self, value):
        """
        Overview:
            Normalize the value.
        Arguments:
            - value (:obj:`np.ndarray`): The value array.
        """

        # [0, 1]
        normed = (value - self.vmin) / (self.vmax - self.vmin)
        # [-1, 1]
        normed = normed * 2 - 1
        return normed

    def __getitem__(self, idx, eps=1e-4):
        """
        Overview:
            Get the item of the dataset.
        Arguments:
            - idx (:obj:`int`): The index of the dataset.
            - eps (:obj:`float`): The epsilon.
        """

        path_ind, start, end = self.indices[idx]

        observations = self.fields['normed_observations'][path_ind, start:end]
        actions = self.fields['normed_actions'][path_ind, start:end]
        done = self.fields['terminals'][path_ind, start:end]

        # conditions = self.get_conditions(observations)
        trajectories = np.concatenate([actions, observations], axis=-1)

        if self.include_returns:
            rewards = self.fields['rewards'][path_ind, start:]
            discounts = self.discounts[:len(rewards)]
            returns = (discounts * rewards).sum()
            if self.normed:
                returns = self.normalize_value(returns)
            returns = np.array([returns / self.returns_scale], dtype=np.float32)
            batch = {
                'trajectories': trajectories,
                'returns': returns,
                'done': done,
                'action': actions,
            }
        else:
            batch = {
                'trajectories': trajectories,
                'done': done,
                'action': actions,
            }

        batch.update(self.get_conditions(observations))
        return batch


def hdf5_save(exp_data, expert_data_path):
    """
    Overview:
        Save the data to hdf5.
    """

    try:
        import h5py
    except ImportError:
        import sys
        logging.warning("not found h5py package, please install it trough 'pip install h5py' ")
        sys.exit(1)
    dataset = dataset = h5py.File('%s_demos.hdf5' % expert_data_path.replace('.pkl', ''), 'w')
    dataset.create_dataset('obs', data=np.array([d['obs'].numpy() for d in exp_data]), compression='gzip')
    dataset.create_dataset('action', data=np.array([d['action'].numpy() for d in exp_data]), compression='gzip')
    dataset.create_dataset('reward', data=np.array([d['reward'].numpy() for d in exp_data]), compression='gzip')
    dataset.create_dataset('done', data=np.array([d['done'] for d in exp_data]), compression='gzip')
    dataset.create_dataset('next_obs', data=np.array([d['next_obs'].numpy() for d in exp_data]), compression='gzip')


def naive_save(exp_data, expert_data_path):
    """
    Overview:
        Save the data to pickle.
    """

    with open(expert_data_path, 'wb') as f:
        pickle.dump(exp_data, f)


def offline_data_save_type(exp_data, expert_data_path, data_type='naive'):
    """
    Overview:
        Save the offline data.
    """

    globals()[data_type + '_save'](exp_data, expert_data_path)


def create_dataset(cfg, **kwargs) -> Dataset:
    """
    Overview:
        Create dataset.
    """

    cfg = EasyDict(cfg)
    import_module(cfg.get('import_names', []))
    return DATASET_REGISTRY.build(cfg.policy.collect.data_type, cfg=cfg, **kwargs)