File size: 17,245 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
from typing import Iterable, Callable, Optional, Any, Union
import time
import platform
import threading
import queue

import torch
import torch.multiprocessing as tm
from ding.torch_utils import to_device
from ding.utils import LockContext, LockContextType
from .base_dataloader import IDataLoader
from .collate_fn import default_collate


class AsyncDataLoader(IDataLoader):
    """
    Overview:
        An asynchronous dataloader.
    Interfaces:
        ``__init__``, ``__iter__``, ``__next__``, ``_get_data``, ``_async_loop``, ``_worker_loop``, ``_cuda_loop``, \
            ``_get_data``, ``close``
    """

    def __init__(
            self,
            data_source: Union[Callable, dict],
            batch_size: int,
            device: str,
            chunk_size: Optional[int] = None,
            collate_fn: Optional[Callable] = None,
            num_workers: int = 0
    ) -> None:
        """
        Overview:
            Init dataloader with input parameters.
            If ``data_source`` is ``dict``, data will only be processed in ``get_data_thread`` and put into
            ``async_train_queue``.
            If ``data_source`` is ``Callable``, data will be processed by implementing functions, and can be sorted
            in two types:

                - ``num_workers`` == 0 or 1: Only main worker will process it and put into ``async_train_queue``.
                - ``num_workers`` >  1: Main worker will divide a job into several pieces, push every job into \
                    ``job_queue``; Then slave workers get jobs and implement; Finally they will push procesed data \
                    into ``async_train_queue``.

            At the last step, if ``device`` contains "cuda", data in ``async_train_queue`` will be transferred to
            ``cuda_queue`` for uer to access.
        Arguments:
            - data_source (:obj:`Union[Callable, dict]`): The data source, e.g. function to be implemented(Callable), \
                replay buffer's real data(dict), etc.
            - batch_size (:obj:`int`): Batch size.
            - device (:obj:`str`): Device.
            - chunk_size (:obj:`int`): The size of a chunked piece in a batch, should exactly divide ``batch_size``, \
                only function when there are more than 1 worker.
            - collate_fn (:obj:`Callable`): The function which is used to collate batch size into each data field.
            - num_workers (:obj:`int`): Number of extra workers. \
                0 or 1 means only 1 main worker and no extra ones, i.e. Multiprocessing is disabled. \
                More than 1 means multiple workers implemented by multiprocessing are to processs data respectively.
        """
        self.data_source = data_source
        self.batch_size = batch_size
        self.device = device
        self.use_cuda = 'cuda' in self.device
        if self.use_cuda:
            self.stream = torch.cuda.Stream()
        if chunk_size is None:
            self.chunk_size = 1
        else:
            self.chunk_size = chunk_size
        assert self.batch_size >= self.chunk_size and self.batch_size % self.chunk_size == 0, '{}/{}'.format(
            self.batch_size, self.chunk_size
        )
        if collate_fn is None:
            self.collate_fn = default_collate
        else:
            self.collate_fn = collate_fn
        self.num_workers = num_workers
        if self.num_workers < 0:
            raise ValueError(
                '"num_workers" should be non-negative; '
                'Use num_workers = 0 or 1 to disable multiprocessing.'
            )
        # Up to "2 * num_workers" pieces of data will be stored in dataloader, waiting for learner to get.
        # Up to "2 * num_workers" jobs will be stored in dataloader, waiting for slave process to get and accomplish.
        queue_maxsize = max(1, self.num_workers) * 2
        self.queue_maxsize = queue_maxsize

        # For multiprocessing: Use ``spawn`` on Windows, ``fork`` on other platforms.
        context_str = 'spawn' if platform.system().lower() == 'windows' else 'fork'
        self.mp_context = tm.get_context(context_str)
        self.manager = self.mp_context.Manager()
        # ``async_train_queue`` is the queue to store processed data.
        # User can directly access data if don't use cuda; Otherwise, user will access data from ``cuda_queue``.
        self.async_train_queue = self.mp_context.Queue(maxsize=queue_maxsize)
        self.end_flag = False

        # Multiprocessing workers: If num_workers > 1, more than 1 worker are to process data.
        if self.num_workers > 1:
            self.batch_id = self.mp_context.Value('i', 0)
            self.cur_batch = self.mp_context.Value('i', 0)
            if self.batch_size != self.chunk_size:
                # job_result {batch_id: result_list} is used to store processed result in temporal.
                self.job_result = self.manager.dict()
                self.job_result_lock = LockContext(type_=LockContextType.PROCESS_LOCK)
            self.job_queue = self.mp_context.Queue(maxsize=queue_maxsize)
            self.worker = [
                self.mp_context.Process(
                    target=self._worker_loop, args=(), name='dataloader_worker{}_{}'.format(i, time.time())
                ) for i in range(self.num_workers)
            ]
            for w in self.worker:
                w.daemon = True
                w.start()
            print('Using {} workers to load data'.format(self.num_workers))

        # Parent and child pipes. Used by ``async_process`` and ``get_data_thread`` to coordinate.
        p, c = self.mp_context.Pipe()

        # Async process (Main worker): Process data if num_workers <= 1; Assign job to other workers if num_workers > 1.
        self.async_process = self.mp_context.Process(target=self._async_loop, args=(p, c))
        self.async_process.daemon = True
        self.async_process.start()

        # Get data thread: Get data from ``data_source`` and send it to ``async_process``.`
        self.get_data_thread = threading.Thread(target=self._get_data, args=(p, c))
        self.get_data_thread.daemon = True
        self.get_data_thread.start()

        # Cuda thread: If use cuda, data in ``async_train_queue`` will be transferred to ``cuda_queue``;
        # Then user will access data from ``cuda_queue``.
        if self.use_cuda:
            self.cuda_queue = queue.Queue(maxsize=queue_maxsize)
            self.cuda_thread = threading.Thread(target=self._cuda_loop, args=(), name='dataloader_cuda')
            self.cuda_thread.daemon = True
            self.cuda_thread.start()

    def __iter__(self) -> Iterable:
        """
        Overview:
            Return the iterable self as an iterator.
        Returns:
            - self (:obj:`Iterable`): Self as an iterator.
        """
        return self

    def _get_data(self, p: tm.multiprocessing.connection, c: tm.multiprocessing.connection) -> None:
        """
        Overview:
            Init dataloader with input parameters. Will run as a thread through ``self.get_data_thread``.
        Arguments:
            - p (:obj:`tm.multiprocessing.connection`): Parent connection.
            - c (:obj:`tm.multiprocessing.connection`): Child connection.
        """
        c.close()  # Close unused c, only use p
        while not self.end_flag:
            if not p.poll(timeout=0.2):
                time.sleep(0.01)
                continue
            try:
                cmd = p.recv()
            except EOFError:
                break
            if cmd == 'get_data':
                # Main worker asks for data.
                data = self.data_source(self.batch_size)
                # ``data`` can be callable, e.g. a function to read data from file, therefore we can divide
                # this job to pieces, assign to every slave worker and accomplish jobs asynchronously.
                # But if we get a list of dicts, which means the data has already been processed and
                # can be used directly, we can put it directly in async_train_queue and wait it
                # to be accessed by a user, e.g. learner.
                if isinstance(data[0], dict):
                    data = self.collate_fn(data)
                    self.async_train_queue.put(data)
                    p.send('pass')
                else:
                    p.send(data)
        p.close()

    def _async_loop(self, p: tm.multiprocessing.connection, c: tm.multiprocessing.connection) -> None:
        """
        Overview:
            Main worker process. Run through ``self.async_process``.
            Firstly, get data from ``self.get_data_thread``.
            If multiple workers, put data in ``self.job_queue`` for further multiprocessing operation;
            If only one worker, process data and put directly into ``self.async_train_queue``.
        Arguments:
            - p (:obj:`tm.multiprocessing.connection`): Parent connection.
            - c (:obj:`tm.multiprocessing.connection`): Child connection.
        """
        torch.set_num_threads(1)
        p.close()  # Close unused p, only use c
        while not self.end_flag:
            if self.num_workers > 1:
                # Multiple workers: Put jobs (chunked data) into job_queue
                if self.job_queue.full():
                    time.sleep(0.001)
                else:
                    # Get data from ``_get_data`` thread.
                    c.send('get_data')
                    data = c.recv()
                    if isinstance(data, str) and data == 'pass':
                        continue
                    # Get data to be processed, chunk it into pieces and put them into job_queue.
                    chunk_num = self.batch_size // self.chunk_size
                    with self.batch_id.get_lock():
                        for i in range(chunk_num):
                            start, end = i * self.chunk_size, (i + 1) * self.chunk_size
                            self.job_queue.put({'batch_id': self.batch_id.value, 'job': data[start:end]})
                        self.batch_id.value = (self.batch_id.value + 1) % self.queue_maxsize  # Increment batch_id
                    time.sleep(0.001)
            else:
                # Only one worker: Process data and directly put it into async_train_queue
                if self.async_train_queue.full():
                    time.sleep(0.001)
                else:
                    c.send('get_data')
                    data = c.recv()
                    if isinstance(data, str) and data == 'pass':
                        continue
                    data = [fn() for fn in data]  # Implement functions in list ``data``.
                    data = self.collate_fn(data)
                    self.async_train_queue.put(data)
        c.close()

    def _worker_loop(self) -> None:
        """
        Overview:
            Worker process. Run through each element in list ``self.worker``.
            Get data job from ``self.job_queue``, process it and then put into ``self.async_train_queue``.
            Only function when ``self.num_workers`` > 1, which means using multiprocessing.
        """
        while not self.end_flag:
            if self.job_queue.empty() or self.async_train_queue.full():
                # No left job to be done, or finished job have no space to store.
                time.sleep(0.01)
                continue
            else:
                try:
                    element = self.job_queue.get()
                except (ConnectionResetError, ConnectionRefusedError) as e:
                    break
                batch_id, job = element['batch_id'], element['job']
                # Process the assigned data.
                data = [fn() for fn in job]  # Only function-type job will arrive here, dict-type will not
                if len(data) == self.batch_size == self.chunk_size:
                    # Data not chunked: Finish the assigned one means finishing a whole batch.
                    data = self.collate_fn(data)
                    while batch_id != self.cur_batch.value:
                        time.sleep(0.01)
                    self.async_train_queue.put(data)
                    # Directly update cur_batch, since a whole batch is finished
                    with self.cur_batch.get_lock():
                        self.cur_batch.value = (self.cur_batch.value + 1) % self.queue_maxsize
                else:
                    # Data chunked: Must wait for all chunked pieces in a batch to be accomplished.
                    finish_flag = False  # indicate whether a whole batch is accomplished
                    with self.job_result_lock:
                        if batch_id not in self.job_result:
                            # The first one in a batch
                            self.job_result[batch_id] = data
                        elif len(self.job_result[batch_id]) + len(data) == self.batch_size:
                            # The last one in a batch
                            data += self.job_result.pop(batch_id)
                            assert batch_id not in self.job_result
                            finish_flag = True
                        else:
                            # Middle pieces in a batch
                            self.job_result[batch_id] += data
                    if finish_flag:
                        data = self.collate_fn(data)
                        while batch_id != self.cur_batch.value:
                            time.sleep(0.01)
                        self.async_train_queue.put(data)
                        with self.cur_batch.get_lock():
                            self.cur_batch.value = (self.cur_batch.value + 1) % self.queue_maxsize
        # If ``self.end_flag`` is True, clear and close job_queue, because _worker_loop gets jobs from job_queue.
        while not self.job_queue.empty():
            try:
                _ = self.job_queue.get()
            except Exception as e:
                break
        self.job_queue.close()
        self.job_queue.join_thread()

    def _cuda_loop(self) -> None:
        """
        Overview:
            Only when using cuda, would this be run as a thread through ``self.cuda_thread``.
            Get data from ``self.async_train_queue``, change its device and put it into ``self.cuda_queue``
        """
        with torch.cuda.stream(self.stream):
            while not self.end_flag:
                if self.async_train_queue.empty() or self.cuda_queue.full():
                    time.sleep(0.01)
                else:
                    data = self.async_train_queue.get()
                    data = to_device(data, self.device)
                    self.cuda_queue.put(data)
        # If ``self.end_flag``` is True, clear and close async_train_queue,
        # because _cuda_loop gets data from async_train_queue.
        while not self.async_train_queue.empty():
            _ = self.async_train_queue.get()
        self.async_train_queue.close()
        self.async_train_queue.join_thread()

    def __next__(self) -> Any:
        """
        Overview:
            Return next data in the iterator. If use cuda, get from ``self.cuda_queue``;
            Otherwise, get from ``self.async_train_queue``.
        Returns:
            - data (:obj:`torch.Tensor`): Next data in the dataloader iterator.
        """
        while not self.end_flag:
            if self.use_cuda:
                if self.cuda_queue.empty():
                    time.sleep(0.01)
                else:
                    data = self.cuda_queue.get(timeout=60)
                    self.cuda_queue.task_done()
                    return data
            else:
                if self.async_train_queue.empty():
                    time.sleep(0.01)
                else:
                    return self.async_train_queue.get()
        # If ``self.end_flag``` is True, clear and close either 1) or 2):
        # 1) cuda_queue. Because user get data from cuda_queue, and async_train_queue is closed by cuda_loop.
        # 2) async_train_queue. Because user get data from async_train_queue.
        if self.use_cuda:
            while not self.cuda_queue.empty():
                _ = self.cuda_queue.get()
                self.cuda_queue.task_done()
            self.cuda_queue.join()
        else:
            while not self.async_train_queue.empty():
                _ = self.async_train_queue.get()
            self.async_train_queue.close()
            self.async_train_queue.join_thread()

    def __del__(self) -> None:
        """
        Overview:
            Delete this dataloader.
        """
        self.close()

    def close(self) -> None:
        """
        Overview:
            Delete this dataloader. First set ``end_flag`` to True, which means different processes/threads
            will clear and close all data queues; Then  all processes will be terminated and joined.
        """
        if self.end_flag:
            return
        self.end_flag = True
        self.async_process.terminate()
        self.async_process.join()
        if self.num_workers > 1:
            for w in self.worker:
                w.terminate()
                w.join()
        print('Del AsyncDataLoader')