File size: 38,560 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
"""
This implementation of ResNet is a bit modification version of `https://github.com/rwightman/pytorch-image-models.git`
"""
from typing import List, Callable, Optional, Tuple, Type, Dict, Union
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .nn_module import Flatten
def to_2tuple(item: int) -> tuple:
"""
Overview:
Convert a scalar to a 2-tuple or return the item if it's not a scalar.
Arguments:
- item (:obj:`int`): An item to be converted to a 2-tuple.
Returns:
- (:obj:`tuple`): A 2-tuple of the item.
"""
if np.isscalar(item):
return (item, item)
else:
return item
# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
def get_same_padding(x: int, k: int, s: int, d: int) -> int:
"""
Overview:
Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution.
Arguments:
- x (:obj:`int`): The size of the input.
- k (:obj:`int`): The size of the kernel.
- s (:obj:`int`): The stride of the convolution.
- d (:obj:`int`): The dilation of the convolution.
Returns:
- (:obj:`int`): The size of the padding.
"""
return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0)
# Dynamically pad input x with 'SAME' padding for conv with specified args
def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0):
"""
Overview:
Dynamically pad input x with 'SAME' padding for conv with specified args.
Arguments:
- x (:obj:`Tensor`): The input tensor.
- k (:obj:`List[int]`): The size of the kernel.
- s (:obj:`List[int]`): The stride of the convolution.
- d (:obj:`List[int]`): The dilation of the convolution.
- value (:obj:`float`): Value to fill the padding.
Returns:
- (:obj:`Tensor`): The padded tensor.
"""
ih, iw = x.size()[-2:]
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw, k[1], s[1], d[1])
if pad_h > 0 or pad_w > 0:
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2], value=value)
return x
def avg_pool2d_same(
x,
kernel_size: List[int],
stride: List[int],
padding: List[int] = (0, 0),
ceil_mode: bool = False,
count_include_pad: bool = True
):
"""
Overview:
Apply average pooling with 'SAME' padding on the input tensor.
Arguments:
- x (:obj:`Tensor`): The input tensor.
- kernel_size (:obj:`List[int]`): The size of the kernel.
- stride (:obj:`List[int]`): The stride of the convolution.
- padding (:obj:`List[int]`): The size of the padding.
- ceil_mode (:obj:`bool`): When True, will use ceil instead of floor to compute the output shape.
- count_include_pad (:obj:`bool`): When True, will include the zero-padding in the averaging calculation.
Returns:
- (:obj:`Tensor`): The tensor after average pooling.
"""
# FIXME how to deal with count_include_pad vs not for external padding?
x = pad_same(x, kernel_size, stride)
return F.avg_pool2d(x, kernel_size, stride, (0, 0), ceil_mode, count_include_pad)
class AvgPool2dSame(nn.AvgPool2d):
"""
Overview:
Tensorflow-like 'SAME' wrapper for 2D average pooling.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
kernel_size: int,
stride: Optional[Tuple[int, int]] = None,
padding: int = 0,
ceil_mode: bool = False,
count_include_pad: bool = True
) -> None:
"""
Overview:
Initialize the AvgPool2dSame with given arguments.
Arguments:
- kernel_size (:obj:`int`): The size of the window to take an average over.
- stride (:obj:`Optional[Tuple[int, int]]`): The stride of the window. If None, default to kernel_size.
- padding (:obj:`int`): Implicit zero padding to be added on both sides.
- ceil_mode (:obj:`bool`): When True, will use `ceil` instead of `floor` to compute the output shape.
- count_include_pad (:obj:`bool`): When True, will include the zero-padding in the averaging calculation.
"""
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
super(AvgPool2dSame, self).__init__(kernel_size, stride, (0, 0), ceil_mode, count_include_pad)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Forward pass of the AvgPool2dSame.
Argument:
- x (:obj:`torch.Tensor`): Input tensor.
Returns:
- (:obj:`torch.Tensor`): Output tensor after average pooling.
"""
x = pad_same(x, self.kernel_size, self.stride)
return F.avg_pool2d(x, self.kernel_size, self.stride, self.padding, self.ceil_mode, self.count_include_pad)
def _create_pool(num_features: int,
num_classes: int,
pool_type: str = 'avg',
use_conv: bool = False) -> Tuple[nn.Module, int]:
"""
Overview:
Create a global pooling layer based on the given arguments.
Arguments:
- num_features (:obj:`int`): Number of input features.
- num_classes (:obj:`int`): Number of output classes.
- pool_type (:obj:`str`): Type of the pooling operation. Defaults to 'avg'.
- use_conv (:obj:`bool`): Whether to use convolutional layer after pooling. Defaults to False.
Returns:
- (:obj:`Tuple[nn.Module, int]`): The created global pooling layer and the number of pooled features.
"""
flatten_in_pool = not use_conv # flatten when we use a Linear layer after pooling
if not pool_type:
assert num_classes == 0 or use_conv, \
'Pooling can only be disabled if classifier is also removed or conv classifier is used'
flatten_in_pool = False # disable flattening if pooling is pass-through (no pooling)
assert flatten_in_pool
global_pool = nn.AdaptiveAvgPool2d(1)
num_pooled_features = num_features * 1
return global_pool, num_pooled_features
def _create_fc(num_features: int, num_classes: int, use_conv: bool = False) -> nn.Module:
"""
Overview:
Create a fully connected layer based on the given arguments.
Arguments:
- num_features (:obj:`int`): Number of input features.
- num_classes (:obj:`int`): Number of output classes.
- use_conv (:obj:`bool`): Whether to use convolutional layer. Defaults to False.
Returns:
- (:obj:`nn.Module`): The created fully connected layer.
"""
if num_classes <= 0:
fc = nn.Identity() # pass-through (no classifier)
elif use_conv:
fc = nn.Conv2d(num_features, num_classes, 1, bias=True)
else:
# use nn.Linear for simplification
fc = nn.Linear(num_features, num_classes, bias=True)
return fc
def create_classifier(num_features: int,
num_classes: int,
pool_type: str = 'avg',
use_conv: bool = False) -> Tuple[nn.Module, nn.Module]:
"""
Overview:
Create a classifier with global pooling layer and fully connected layer.
Arguments:
- num_features (:obj:`int`): The number of features.
- num_classes (:obj:`int`): The number of classes for the final classification.
- pool_type (:obj:`str`): The type of pooling to use; 'avg' for Average Pooling.
- use_conv (:obj:`bool`): Whether to use convolution or not.
Returns:
- global_pool (:obj:`nn.Module`): The created global pooling layer.
- fc (:obj:`nn.Module`): The created fully connected layer.
"""
assert pool_type == 'avg'
global_pool, num_pooled_features = _create_pool(num_features, num_classes, pool_type, use_conv=use_conv)
fc = _create_fc(num_pooled_features, num_classes, use_conv=use_conv)
return global_pool, fc
class ClassifierHead(nn.Module):
"""
Overview:
Classifier head with configurable global pooling and dropout.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
in_chs: int,
num_classes: int,
pool_type: str = 'avg',
drop_rate: float = 0.,
use_conv: bool = False
) -> None:
"""
Overview:
Initialize the ClassifierHead with given arguments.
Arguments:
- in_chs (:obj:`int`): Number of input channels.
- num_classes (:obj:`int`): Number of classes for the final classification.
- pool_type (:obj:`str`): The type of pooling to use; 'avg' for Average Pooling.
- drop_rate (:obj:`float`): The dropout rate.
- use_conv (:obj:`bool`): Whether to use convolution or not.
"""
super(ClassifierHead, self).__init__()
self.drop_rate = drop_rate
self.global_pool, num_pooled_features = _create_pool(in_chs, num_classes, pool_type, use_conv=use_conv)
self.fc = _create_fc(num_pooled_features, num_classes, use_conv=use_conv)
self.flatten = Flatten(1) if use_conv and pool_type else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Forward pass of the ClassifierHead.
Argument:
- x (:obj:`torch.Tensor`): Input tensor.
Returns:
- (:obj:`torch.Tensor`): Output tensor after classification.
"""
x = self.global_pool(x)
if self.drop_rate:
x = F.dropout(x, p=float(self.drop_rate), training=self.training)
x = self.fc(x)
x = self.flatten(x)
return x
def create_attn(layer: nn.Module, plane: int) -> None:
"""
Overview:
Create an attention mechanism.
Arguments:
- layer (:obj:`nn.Module`): The layer where the attention is to be applied.
- plane (:obj:`int`): The plane on which the attention is to be applied.
Returns:
- None
"""
return None
def get_padding(kernel_size: int, stride: int, dilation: int = 1) -> int:
"""
Overview:
Compute the padding based on the kernel size, stride and dilation.
Arguments:
- kernel_size (:obj:`int`): The size of the kernel.
- stride (:obj:`int`): The stride of the convolution.
- dilation (:obj:`int`): The dilation factor.
Returns:
- padding (:obj:`int`): The computed padding.
"""
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding
class BasicBlock(nn.Module):
"""
Overview:
The basic building block for models like ResNet. This class extends pytorch's Module class.
It represents a standard block of layers including two convolutions, batch normalization,
an optional attention mechanism, and activation functions.
Interfaces:
``__init__``, ``forward``, ``zero_init_last_bn``
Properties:
- expansion (:obj:int): Specifies the expansion factor for the planes of the conv layers.
"""
expansion = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Callable = None,
cardinality: int = 1,
base_width: int = 64,
reduce_first: int = 1,
dilation: int = 1,
first_dilation: int = None,
act_layer: Callable = nn.ReLU,
norm_layer: Callable = nn.BatchNorm2d,
attn_layer: Callable = None,
aa_layer: Callable = None,
drop_block: Callable = None,
drop_path: Callable = None
) -> None:
"""
Overview:
Initialize the BasicBlock with given parameters.
Arguments:
- inplanes (:obj:`int`): Number of input channels.
- planes (:obj:`int`): Number of output channels.
- stride (:obj:`int`): The stride of the convolutional layer.
- downsample (:obj:`Callable`): Function for downsampling the inputs.
- cardinality (:obj:`int`): Group size for grouped convolution.
- base_width (:obj:`int`): Base width of the convolutions.
- reduce_first (:obj:`int`): Reduction factor for first convolution of each block.
- dilation (:obj:`int`): Spacing between kernel points.
- first_dilation (:obj:`int`): First dilation value.
- act_layer (:obj:`Callable`): Function for activation layer.
- norm_layer (:obj:`Callable`): Function for normalization layer.
- attn_layer (:obj:`Callable`): Function for attention layer.
- aa_layer (:obj:`Callable`): Function for anti-aliasing layer.
- drop_block (:obj:`Callable`): Method for dropping block.
- drop_path (:obj:`Callable`): Method for dropping path.
"""
super(BasicBlock, self).__init__()
assert cardinality == 1, 'BasicBlock only supports cardinality of 1'
assert base_width == 64, 'BasicBlock does not support changing base width'
first_planes = planes // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation)
self.conv1 = nn.Conv2d(
inplanes,
first_planes,
kernel_size=3,
stride=1 if use_aa else stride,
padding=first_dilation,
dilation=first_dilation,
bias=False
)
self.bn1 = norm_layer(first_planes)
self.act1 = act_layer(inplace=True)
self.aa = aa_layer(channels=first_planes, stride=stride) if use_aa else None
self.conv2 = nn.Conv2d(first_planes, outplanes, kernel_size=3, padding=dilation, dilation=dilation, bias=False)
self.bn2 = norm_layer(outplanes)
self.se = create_attn(attn_layer, outplanes)
self.act2 = act_layer(inplace=True)
self.downsample = downsample
self.stride = stride
self.dilation = dilation
self.drop_block = drop_block
self.drop_path = drop_path
def zero_init_last_bn(self) -> None:
"""
Overview:
Initialize the batch normalization layer with zeros.
"""
nn.init.zeros_(self.bn2.weight)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Defines the computation performed at every call.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- output (:obj:`torch.Tensor`): The output tensor after passing through the BasicBlock.
"""
shortcut = x
x = self.conv1(x)
x = self.bn1(x)
if self.drop_block is not None:
x = self.drop_block(x)
x = self.act1(x)
if self.aa is not None:
x = self.aa(x)
x = self.conv2(x)
x = self.bn2(x)
if self.drop_block is not None:
x = self.drop_block(x)
if self.se is not None:
x = self.se(x)
if self.drop_path is not None:
x = self.drop_path(x)
if self.downsample is not None:
shortcut = self.downsample(shortcut)
x += shortcut
x = self.act2(x)
return x
class Bottleneck(nn.Module):
"""
Overview:
The Bottleneck class is a basic block used to build ResNet networks. It is a part of the PyTorch's
implementation of ResNet. This block is designed with several layers including a convolutional layer,
normalization layer, activation layer, attention layer, anti-aliasing layer, and a dropout layer.
Interfaces:
``__init__``, ``forward``, ``zero_init_last_bn``
Properties:
expansion, inplanes, planes, stride, downsample, cardinality, base_width, reduce_first, dilation, \
first_dilation, act_layer, norm_layer, attn_layer, aa_layer, drop_block, drop_path
"""
expansion = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
cardinality: int = 1,
base_width: int = 64,
reduce_first: int = 1,
dilation: int = 1,
first_dilation: Optional[int] = None,
act_layer: Type[nn.Module] = nn.ReLU,
norm_layer: Type[nn.Module] = nn.BatchNorm2d,
attn_layer: Optional[Type[nn.Module]] = None,
aa_layer: Optional[Type[nn.Module]] = None,
drop_block: Callable = None,
drop_path: Callable = None
) -> None:
"""
Overview:
Initialize the Bottleneck class with various parameters.
Arguments:
- inplanes (:obj:`int`): The number of input planes.
- planes (:obj:`int`): The number of output planes.
- stride (:obj:`int`, optional): The stride size, defaults to 1.
- downsample (:obj:`nn.Module`, optional): The downsample method, defaults to None.
- cardinality (:obj:`int`, optional): The size of the group convolutions, defaults to 1.
- base_width (:obj:`int`, optional): The base width, defaults to 64.
- reduce_first (:obj:`int`, optional): The first reduction factor, defaults to 1.
- dilation (:obj:`int`, optional): The dilation factor, defaults to 1.
- first_dilation (:obj:`int`, optional): The first dilation factor, defaults to None.
- act_layer (:obj:`Type[nn.Module]`, optional): The activation layer type, defaults to nn.ReLU.
- norm_layer (:obj:`Type[nn.Module]`, optional): The normalization layer type, defaults to nn.BatchNorm2d.
- attn_layer (:obj:`Type[nn.Module]`, optional): The attention layer type, defaults to None.
- aa_layer (:obj:`Type[nn.Module]`, optional): The anti-aliasing layer type, defaults to None.
- drop_block (:obj:`Callable`): The dropout block, defaults to None.
- drop_path (:obj:`Callable`): The drop path, defaults to None.
"""
super(Bottleneck, self).__init__()
width = int(math.floor(planes * (base_width / 64)) * cardinality)
first_planes = width // reduce_first
outplanes = planes * self.expansion
first_dilation = first_dilation or dilation
use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation)
self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False)
self.bn1 = norm_layer(first_planes)
self.act1 = act_layer(inplace=True)
self.conv2 = nn.Conv2d(
first_planes,
width,
kernel_size=3,
stride=1 if use_aa else stride,
padding=first_dilation,
dilation=first_dilation,
groups=cardinality,
bias=False
)
self.bn2 = norm_layer(width)
self.act2 = act_layer(inplace=True)
self.aa = aa_layer(channels=width, stride=stride) if use_aa else None
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)
self.bn3 = norm_layer(outplanes)
self.se = create_attn(attn_layer, outplanes)
self.act3 = act_layer(inplace=True)
self.downsample = downsample
self.stride = stride
self.dilation = dilation
self.drop_block = drop_block
self.drop_path = drop_path
def zero_init_last_bn(self) -> None:
"""
Overview:
Initialize the last batch normalization layer with zero.
"""
nn.init.zeros_(self.bn3.weight)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Defines the computation performed at every call.
Arguments:
- x (:obj:`Tensor`): The input tensor.
Returns:
- x (:obj:`Tensor`): The output tensor resulting from the computation.
"""
shortcut = x
x = self.conv1(x)
x = self.bn1(x)
if self.drop_block is not None:
x = self.drop_block(x)
x = self.act1(x)
x = self.conv2(x)
x = self.bn2(x)
if self.drop_block is not None:
x = self.drop_block(x)
x = self.act2(x)
if self.aa is not None:
x = self.aa(x)
x = self.conv3(x)
x = self.bn3(x)
if self.drop_block is not None:
x = self.drop_block(x)
if self.se is not None:
x = self.se(x)
if self.drop_path is not None:
x = self.drop_path(x)
if self.downsample is not None:
shortcut = self.downsample(shortcut)
x += shortcut
x = self.act3(x)
return x
def downsample_conv(
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
dilation: int = 1,
first_dilation: int = None,
norm_layer: Type[nn.Module] = None
) -> nn.Sequential:
"""
Overview:
Create a sequential module for downsampling that includes a convolution layer and a normalization layer.
Arguments:
- in_channels (:obj:`int`): The number of input channels.
- out_channels (:obj:`int`): The number of output channels.
- kernel_size (:obj:`int`): The size of the kernel.
- stride (:obj:`int`, optional): The stride size, defaults to 1.
- dilation (:obj:`int`, optional): The dilation factor, defaults to 1.
- first_dilation (:obj:`int`, optional): The first dilation factor, defaults to None.
- norm_layer (:obj:`Type[nn.Module]`, optional): The normalization layer type, defaults to nn.BatchNorm2d.
Returns:
- nn.Sequential: A sequence of layers performing downsampling through convolution.
"""
norm_layer = norm_layer or nn.BatchNorm2d
kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size
first_dilation = (first_dilation or dilation) if kernel_size > 1 else 1
p = get_padding(kernel_size, stride, first_dilation)
return nn.Sequential(
*[
nn.Conv2d(
in_channels, out_channels, kernel_size, stride=stride, padding=p, dilation=first_dilation, bias=False
),
norm_layer(out_channels)
]
)
def downsample_avg(
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
dilation: int = 1,
first_dilation: int = None,
norm_layer: Type[nn.Module] = None
) -> nn.Sequential:
"""
Overview:
Create a sequential module for downsampling that includes an average pooling layer, a convolution layer,
and a normalization layer.
Arguments:
- in_channels (:obj:`int`): The number of input channels.
- out_channels (:obj:`int`): The number of output channels.
- kernel_size (:obj:`int`): The size of the kernel.
- stride (:obj:`int`, optional): The stride size, defaults to 1.
- dilation (:obj:`int`, optional): The dilation factor, defaults to 1.
- first_dilation (:obj:`int`, optional): The first dilation factor, defaults to None.
- norm_layer (:obj:`Type[nn.Module]`, optional): The normalization layer type, defaults to nn.BatchNorm2d.
Returns:
- nn.Sequential: A sequence of layers performing downsampling through average pooling.
"""
norm_layer = norm_layer or nn.BatchNorm2d
avg_stride = stride if dilation == 1 else 1
if stride == 1 and dilation == 1:
pool = nn.Identity()
else:
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
return nn.Sequential(
*[pool,
nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False),
norm_layer(out_channels)]
)
def drop_blocks(drop_block_rate: float = 0.) -> List[None]:
"""
Overview:
Generate a list of None values based on the drop block rate.
Arguments:
- drop_block_rate (:obj:`float`, optional): The drop block rate, defaults to 0.
Returns:
- List[None]: A list of None values.
"""
assert drop_block_rate == 0., drop_block_rate
return [None for _ in range(4)]
def make_blocks(
block_fn: Type[nn.Module],
channels: List[int],
block_repeats: List[int],
inplanes: int,
reduce_first: int = 1,
output_stride: int = 32,
down_kernel_size: int = 1,
avg_down: bool = False,
drop_block_rate: float = 0.,
drop_path_rate: float = 0.,
**kwargs
) -> Tuple[List[Tuple[str, nn.Module]], List[Dict[str, Union[int, str]]]]:
"""
Overview:
Create a list of blocks for the network, with each block having a given number of repeats. Also, create a
feature info list that contains information about the output of each block.
Arguments:
- block_fn (:obj:`Type[nn.Module]`): The type of block to use.
- channels (:obj:`List[int]`): The list of output channels for each block.
- block_repeats (:obj:`List[int]`): The list of number of repeats for each block.
- inplanes (:obj:`int`): The number of input planes.
- reduce_first (:obj:`int`, optional): The first reduction factor, defaults to 1.
- output_stride (:obj:`int`, optional): The total stride of the network, defaults to 32.
- down_kernel_size (:obj:`int`, optional): The size of the downsample kernel, defaults to 1.
- avg_down (:obj:`bool`, optional): Whether to use average pooling for downsampling, defaults to False.
- drop_block_rate (:obj:`float`, optional): The drop block rate, defaults to 0.
- drop_path_rate (:obj:`float`, optional): The drop path rate, defaults to 0.
- **kwargs: Additional keyword arguments.
Returns:
- Tuple[List[Tuple[str, nn.Module]], List[Dict[str, Union[int, str]]]]: \
A tuple that includes a list of blocks for the network and a feature info list.
"""
stages = []
feature_info = []
net_num_blocks = sum(block_repeats)
net_block_idx = 0
net_stride = 4
dilation = prev_dilation = 1
for stage_idx, (planes, num_blocks, db) in enumerate(zip(channels, block_repeats, drop_blocks(drop_block_rate))):
stage_name = f'layer{stage_idx + 1}' # never liked this name, but weight compat requires it
stride = 1 if stage_idx == 0 else 2
if net_stride >= output_stride:
dilation *= stride
stride = 1
else:
net_stride *= stride
downsample = None
if stride != 1 or inplanes != planes * block_fn.expansion:
down_kwargs = dict(
in_channels=inplanes,
out_channels=planes * block_fn.expansion,
kernel_size=down_kernel_size,
stride=stride,
dilation=dilation,
first_dilation=prev_dilation,
norm_layer=kwargs.get('norm_layer')
)
downsample = downsample_avg(**down_kwargs) if avg_down else downsample_conv(**down_kwargs)
block_kwargs = dict(reduce_first=reduce_first, dilation=dilation, drop_block=db, **kwargs)
blocks = []
for block_idx in range(num_blocks):
downsample = downsample if block_idx == 0 else None
stride = stride if block_idx == 0 else 1
block_dpr = drop_path_rate * net_block_idx / (net_num_blocks - 1) # stochastic depth linear decay rule
blocks.append(
block_fn(
inplanes, planes, stride, downsample, first_dilation=prev_dilation, drop_path=None, **block_kwargs
)
)
prev_dilation = dilation
inplanes = planes * block_fn.expansion
net_block_idx += 1
stages.append((stage_name, nn.Sequential(*blocks)))
feature_info.append(dict(num_chs=inplanes, reduction=net_stride, module=stage_name))
return stages, feature_info
class ResNet(nn.Module):
"""
Overview:
Implements ResNet, ResNeXt, SE-ResNeXt, and SENet models. This implementation supports various modifications
based on the v1c, v1d, v1e, and v1s variants included in the MXNet Gluon ResNetV1b model. For more details
about the variants and options, please refer to the 'Bag of Tricks' paper: https://arxiv.org/pdf/1812.01187.
Interfaces:
``__init__``, ``forward``, ``zero_init_last_bn``, ``get_classifier``
"""
def __init__(
self,
block: nn.Module,
layers: List[int],
num_classes: int = 1000,
in_chans: int = 3,
cardinality: int = 1,
base_width: int = 64,
stem_width: int = 64,
stem_type: str = '',
replace_stem_pool: bool = False,
output_stride: int = 32,
block_reduce_first: int = 1,
down_kernel_size: int = 1,
avg_down: bool = False,
act_layer: nn.Module = nn.ReLU,
norm_layer: nn.Module = nn.BatchNorm2d,
aa_layer: Optional[nn.Module] = None,
drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
drop_block_rate: float = 0.0,
global_pool: str = 'avg',
zero_init_last_bn: bool = True,
block_args: Optional[dict] = None
) -> None:
"""
Overview:
Initialize the ResNet model with given block, layers and other configuration options.
Arguments:
- block (:obj:`nn.Module`): Class for the residual block.
- layers (:obj:`List[int]`): Numbers of layers in each block.
- num_classes (:obj:`int`, optional): Number of classification classes. Default is 1000.
- in_chans (:obj:`int`, optional): Number of input (color) channels. Default is 3.
- cardinality (:obj:`int`, optional): Number of convolution groups for 3x3 conv in Bottleneck. Default is 1.
- base_width (:obj:`int`, optional): Factor determining bottleneck channels. Default is 64.
- stem_width (:obj:`int`, optional): Number of channels in stem convolutions. Default is 64.
- stem_type (:obj:`str`, optional): The type of stem. Default is ''.
- replace_stem_pool (:obj:`bool`, optional): Whether to replace stem pooling. Default is False.
- output_stride (:obj:`int`, optional): Output stride of the network. Default is 32.
- block_reduce_first (:obj:`int`, optional): Reduction factor for first convolution output width of \
residual blocks. Default is 1.
- down_kernel_size (:obj:`int`, optional): Kernel size of residual block downsampling path. Default is 1.
- avg_down (:obj:`bool`, optional): Whether to use average pooling for projection skip connection between
stages/downsample. Default is False.
- act_layer (:obj:`nn.Module`, optional): Activation layer. Default is nn.ReLU.
- norm_layer (:obj:`nn.Module`, optional): Normalization layer. Default is nn.BatchNorm2d.
- aa_layer (:obj:`Optional[nn.Module]`, optional): Anti-aliasing layer. Default is None.
- drop_rate (:obj:`float`, optional): Dropout probability before classifier, for training. Default is 0.0.
- drop_path_rate (:obj:`float`, optional): Drop path rate. Default is 0.0.
- drop_block_rate (:obj:`float`, optional): Drop block rate. Default is 0.0.
- global_pool (:obj:`str`, optional): Global pooling type. Default is 'avg'.
- zero_init_last_bn (:obj:`bool`, optional): Whether to initialize last batch normalization with zero. \
Default is True.
- block_args (:obj:`Optional[dict]`, optional): Additional arguments for block. Default is None.
"""
block_args = block_args or dict()
assert output_stride in (8, 16, 32)
self.num_classes = num_classes
self.drop_rate = drop_rate
super(ResNet, self).__init__()
# Stem
deep_stem = 'deep' in stem_type
inplanes = stem_width * 2 if deep_stem else 64
if deep_stem:
stem_chs = (stem_width, stem_width)
if 'tiered' in stem_type:
stem_chs = (3 * (stem_width // 4), stem_width)
self.conv1 = nn.Sequential(
*[
nn.Conv2d(in_chans, stem_chs[0], 3, stride=2, padding=1, bias=False),
norm_layer(stem_chs[0]),
act_layer(inplace=True),
nn.Conv2d(stem_chs[0], stem_chs[1], 3, stride=1, padding=1, bias=False),
norm_layer(stem_chs[1]),
act_layer(inplace=True),
nn.Conv2d(stem_chs[1], inplanes, 3, stride=1, padding=1, bias=False)
]
)
else:
self.conv1 = nn.Conv2d(in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(inplanes)
self.act1 = act_layer(inplace=True)
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')]
# Stem Pooling
if replace_stem_pool:
self.maxpool = nn.Sequential(
*filter(
None, [
nn.Conv2d(inplanes, inplanes, 3, stride=1 if aa_layer else 2, padding=1, bias=False),
aa_layer(channels=inplanes, stride=2) if aa_layer else None,
norm_layer(inplanes),
act_layer(inplace=True)
]
)
)
else:
if aa_layer is not None:
self.maxpool = nn.Sequential(
*[nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
aa_layer(channels=inplanes, stride=2)]
)
else:
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# Feature Blocks
channels = [64, 128, 256, 512]
stage_modules, stage_feature_info = make_blocks(
block,
channels,
layers,
inplanes,
cardinality=cardinality,
base_width=base_width,
output_stride=output_stride,
reduce_first=block_reduce_first,
avg_down=avg_down,
down_kernel_size=down_kernel_size,
act_layer=act_layer,
norm_layer=norm_layer,
aa_layer=aa_layer,
drop_block_rate=drop_block_rate,
drop_path_rate=drop_path_rate,
**block_args
)
for stage in stage_modules:
self.add_module(*stage) # layer1, layer2, etc
self.feature_info.extend(stage_feature_info)
# Head (Pooling and Classifier)
self.num_features = 512 * block.expansion
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
self.init_weights(zero_init_last_bn=zero_init_last_bn)
def init_weights(self, zero_init_last_bn: bool = True) -> None:
"""
Overview:
Initialize the weights in the model.
Arguments:
- zero_init_last_bn (:obj:`bool`, optional): Whether to initialize last batch normalization with zero.
Default is True.
"""
for n, m in self.named_modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
if zero_init_last_bn:
for m in self.modules():
if hasattr(m, 'zero_init_last_bn'):
m.zero_init_last_bn()
def get_classifier(self) -> nn.Module:
"""
Overview:
Get the classifier module from the model.
Returns:
- classifier (:obj:`nn.Module`): The classifier module in the model.
"""
return self.fc
def reset_classifier(self, num_classes: int, global_pool: str = 'avg') -> None:
"""
Overview:
Reset the classifier with a new number of classes and pooling type.
Arguments:
- num_classes (:obj:`int`): New number of classification classes.
- global_pool (:obj:`str`, optional): New global pooling type. Default is 'avg'.
"""
self.num_classes = num_classes
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Forward pass through the feature layers of the model.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- x (:obj:`torch.Tensor`): The output tensor after passing through feature layers.
"""
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Full forward pass through the model.
Arguments:
- x (:obj:`torch.Tensor`): The input tensor.
Returns:
- x (:obj:`torch.Tensor`): The output tensor after passing through the model.
"""
x = self.forward_features(x)
x = self.global_pool(x)
x = x.view(x.shape[0], -1)
if self.drop_rate:
x = F.dropout(x, p=float(self.drop_rate), training=self.training)
x = self.fc(x)
return x
def resnet18() -> nn.Module:
"""
Overview:
Creates a ResNet18 model.
Returns:
- model (:obj:`nn.Module`): ResNet18 model.
"""
return ResNet(block=BasicBlock, layers=[2, 2, 2, 2])
|