File size: 7,651 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import math
from abc import ABC, abstractmethod
from typing import Callable, Union, Optional
from copy import deepcopy
from ding.torch_utils.data_helper import to_device

import torch


def get_epsilon_greedy_fn(start: float, end: float, decay: int, type_: str = 'exp') -> Callable:
    """
    Overview:
        Generate an epsilon_greedy function with decay, which inputs current timestep and outputs current epsilon.
    Arguments:
        - start (:obj:`float`): Epsilon start value. For 'linear', it should be 1.0.
        - end (:obj:`float`): Epsilon end value.
        - decay (:obj:`int`): Controls the speed that epsilon decreases from ``start`` to ``end``. \
            We recommend epsilon decays according to env step rather than iteration.
        - type (:obj:`str`): How epsilon decays, now supports ['linear', 'exp'(exponential)]
    Returns:
        - eps_fn (:obj:`function`): The epsilon greedy function with decay
    """
    assert type_ in ['linear', 'exp'], type_
    if type_ == 'exp':
        return lambda x: (start - end) * math.exp(-1 * x / decay) + end
    elif type_ == 'linear':

        def eps_fn(x):
            if x >= decay:
                return end
            else:
                return (start - end) * (1 - x / decay) + end

        return eps_fn


class BaseNoise(ABC):
    r"""
    Overview:
        Base class for action noise
    Interface:
        __init__, __call__
    Examples:
        >>> noise_generator = OUNoise()  # init one type of noise
        >>> noise = noise_generator(action.shape, action.device)  # generate noise
    """

    def __init__(self) -> None:
        """
        Overview:
            Initialization method
        """
        super().__init__()

    @abstractmethod
    def __call__(self, shape: tuple, device: str) -> torch.Tensor:
        """
        Overview:
            Generate noise according to action tensor's shape, device
        Arguments:
            - shape (:obj:`tuple`): size of the action tensor, output noise's size should be the same
            - device (:obj:`str`): device of the action tensor, output noise's device should be the same as it
        Returns:
            - noise (:obj:`torch.Tensor`): generated action noise, \
                have the same shape and device with the input action tensor
        """
        raise NotImplementedError


class GaussianNoise(BaseNoise):
    r"""
    Overview:
        Derived class for generating gaussian noise, which satisfies :math:`X \sim N(\mu, \sigma^2)`
    Interface:
        __init__, __call__
    """

    def __init__(self, mu: float = 0.0, sigma: float = 1.0) -> None:
        """
        Overview:
            Initialize :math:`\mu` and :math:`\sigma` in Gaussian Distribution
        Arguments:
            - mu (:obj:`float`):  :math:`\mu` , mean value
            - sigma (:obj:`float`): :math:`\sigma` , standard deviation, should be positive
        """
        super(GaussianNoise, self).__init__()
        self._mu = mu
        assert sigma >= 0, "GaussianNoise's sigma should be positive."
        self._sigma = sigma

    def __call__(self, shape: tuple, device: str) -> torch.Tensor:
        """
        Overview:
            Generate gaussian noise according to action tensor's shape, device
        Arguments:
            - shape (:obj:`tuple`): size of the action tensor, output noise's size should be the same
            - device (:obj:`str`): device of the action tensor, output noise's device should be the same as it
        Returns:
            - noise (:obj:`torch.Tensor`): generated action noise, \
                have the same shape and device with the input action tensor
        """
        noise = torch.randn(shape, device=device)
        noise = noise * self._sigma + self._mu
        return noise


class OUNoise(BaseNoise):
    r"""
    Overview:
        Derived class for generating Ornstein-Uhlenbeck process noise.
        Satisfies :math:`dx_t=\theta(\mu-x_t)dt + \sigma dW_t`,
        where :math:`W_t` denotes Weiner Process, acting as a random perturbation term.
    Interface:
        __init__, reset, __call__
    """

    def __init__(
            self,
            mu: float = 0.0,
            sigma: float = 0.3,
            theta: float = 0.15,
            dt: float = 1e-2,
            x0: Optional[Union[float, torch.Tensor]] = 0.0,
    ) -> None:
        """
        Overview:
            Initialize ``_alpha`` :math:`=\theta * dt\`,
            ``beta`` :math:`= \sigma * \sqrt{dt}`,  in Ornstein-Uhlenbeck process
        Arguments:
            - mu (:obj:`float`):  :math:`\mu` , mean value
            - sigma (:obj:`float`): :math:`\sigma` , standard deviation of the perturbation noise
            - theta (:obj:`float`): how strongly the noise reacts to perturbations, \
                greater value means stronger reaction
            - dt (:obj:`float`): derivative of time t
            - x0 (:obj:`float` or :obj:`torch.Tensor`): initial action
        """
        super().__init__()
        self._mu = mu
        self._alpha = theta * dt
        self._beta = sigma * math.sqrt(dt)
        self._x0 = x0
        self.reset()

    def reset(self) -> None:
        """
        Overview:
            Reset ``_x`` to the initial state ``_x0``
        """
        self._x = deepcopy(self._x0)

    def __call__(self, shape: tuple, device: str, mu: Optional[float] = None) -> torch.Tensor:
        """
        Overview:
            Generate gaussian noise according to action tensor's shape, device
        Arguments:
            - shape (:obj:`tuple`): size of the action tensor, output noise's size should be the same
            - device (:obj:`str`): device of the action tensor, output noise's device should be the same as it
            - mu (:obj:`float`): new mean value :math:`\mu`, you can set it to `None` if don't need it
        Returns:
            - noise (:obj:`torch.Tensor`): generated action noise, \
                have the same shape and device with the input action tensor
        """
        if self._x is None or \
                (isinstance(self._x, torch.Tensor) and self._x.shape != shape):
            self._x = torch.zeros(shape)
        if mu is None:
            mu = self._mu
        noise = self._alpha * (mu - self._x) + self._beta * torch.randn(shape)
        self._x += noise
        noise = to_device(noise, device)
        return noise

    @property
    def x0(self) -> Union[float, torch.Tensor]:
        """
        Overview:
            Get ``self._x0``
        """
        return self._x0

    @x0.setter
    def x0(self, _x0: Union[float, torch.Tensor]) -> None:
        """
        Overview:
            Set ``self._x0`` and reset ``self.x`` to ``self._x0`` as well
        """
        self._x0 = _x0
        self.reset()


noise_mapping = {'gauss': GaussianNoise, 'ou': OUNoise}


def create_noise_generator(noise_type: str, noise_kwargs: dict) -> BaseNoise:
    """
    Overview:
        Given the key (noise_type), create a new noise generator instance if in noise_mapping's values,
        or raise an KeyError. In other words, a derived noise generator must first register,
        then call ``create_noise generator`` to get the instance object.
    Arguments:
        - noise_type (:obj:`str`): the type of noise generator to be created
    Returns:
        - noise (:obj:`BaseNoise`): the created new noise generator, should be an instance of one of \
            noise_mapping's values
    """
    if noise_type not in noise_mapping.keys():
        raise KeyError("not support noise type: {}".format(noise_type))
    else:
        return noise_mapping[noise_type](**noise_kwargs)