File size: 36,128 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
from typing import List, Dict, Any, Tuple, Union
import copy
import numpy as np
import torch
import torch.nn.functional as F
from torch.distributions import Normal, Independent
from ding.torch_utils import Adam, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, \
qrdqn_nstep_td_data, qrdqn_nstep_td_error, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .sac import SACPolicy
from .qrdqn import QRDQNPolicy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('cql')
class CQLPolicy(SACPolicy):
"""
Overview:
Policy class of CQL algorithm for continuous control. Paper link: https://arxiv.org/abs/2006.04779.
Config:
== ==================== ======== ============= ================================= =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============= ================================= =======================
1 ``type`` str cql | RL policy register name, refer | this arg is optional,
| to registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool True | Whether to use cuda for network |
3 | ``random_`` int 10000 | Number of randomly collected | Default to 10000 for
| ``collect_size`` | training samples in replay | SAC, 25000 for DDPG/
| | buffer when training starts. | TD3.
4 | ``model.policy_`` int 256 | Linear layer size for policy |
| ``embedding_size`` | network. |
5 | ``model.soft_q_`` int 256 | Linear layer size for soft q |
| ``embedding_size`` | network. |
6 | ``model.value_`` int 256 | Linear layer size for value | Defalut to None when
| ``embedding_size`` | network. | model.value_network
| | | is False.
7 | ``learn.learning`` float 3e-4 | Learning rate for soft q | Defalut to 1e-3, when
| ``_rate_q`` | network. | model.value_network
| | | is True.
8 | ``learn.learning`` float 3e-4 | Learning rate for policy | Defalut to 1e-3, when
| ``_rate_policy`` | network. | model.value_network
| | | is True.
9 | ``learn.learning`` float 3e-4 | Learning rate for policy | Defalut to None when
| ``_rate_value`` | network. | model.value_network
| | | is False.
10 | ``learn.alpha`` float 0.2 | Entropy regularization | alpha is initiali-
| | coefficient. | zation for auto
| | | `alpha`, when
| | | auto_alpha is True
11 | ``learn.repara_`` bool True | Determine whether to use |
| ``meterization`` | reparameterization trick. |
12 | ``learn.`` bool False | Determine whether to use | Temperature parameter
| ``auto_alpha`` | auto temperature parameter | determines the
| | `alpha`. | relative importance
| | | of the entropy term
| | | against the reward.
13 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only
| ``ignore_done`` | done flag. | in halfcheetah env.
14 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation
| ``target_theta`` | target network. | factor in polyak aver
| | | aging for target
| | | networks.
== ==================== ======== ============= ================================= =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='cql',
# (bool) Whether to use cuda for policy.
cuda=False,
# (bool) on_policy: Determine whether on-policy or off-policy.
# on-policy setting influences the behaviour of buffer.
on_policy=False,
# (bool) priority: Determine whether to use priority in buffer sample.
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (int) Number of training samples(randomly collected) in replay buffer when training starts.
random_collect_size=10000,
model=dict(
# (bool type) twin_critic: Determine whether to use double-soft-q-net for target q computation.
# Please refer to TD3 about Clipped Double-Q Learning trick, which learns two Q-functions instead of one .
# Default to True.
twin_critic=True,
# (str type) action_space: Use reparameterization trick for continous action
action_space='reparameterization',
# (int) Hidden size for actor network head.
actor_head_hidden_size=256,
# (int) Hidden size for critic network head.
critic_head_hidden_size=256,
),
# learn_mode config
learn=dict(
# (int) How many updates (iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
update_per_collect=1,
# (int) Minibatch size for gradient descent.
batch_size=256,
# (float) learning_rate_q: Learning rate for soft q network.
learning_rate_q=3e-4,
# (float) learning_rate_policy: Learning rate for policy network.
learning_rate_policy=3e-4,
# (float) learning_rate_alpha: Learning rate for auto temperature parameter ``alpha``.
learning_rate_alpha=3e-4,
# (float) target_theta: Used for soft update of the target network,
# aka. Interpolation factor in polyak averaging for target networks.
target_theta=0.005,
# (float) discount factor for the discounted sum of rewards, aka. gamma.
discount_factor=0.99,
# (float) alpha: Entropy regularization coefficient.
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details.
# If auto_alpha is set to `True`, alpha is initialization for auto `\alpha`.
# Default to 0.2.
alpha=0.2,
# (bool) auto_alpha: Determine whether to use auto temperature parameter `\alpha` .
# Temperature parameter determines the relative importance of the entropy term against the reward.
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details.
# Default to False.
# Note that: Using auto alpha needs to set learning_rate_alpha in `cfg.policy.learn`.
auto_alpha=True,
# (bool) log_space: Determine whether to use auto `\alpha` in log space.
log_space=True,
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
# However, interaction with HalfCheetah always gets done with done is False,
# Since we inplace done==True with done==False to keep
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
# when the episode step is greater than max episode step.
ignore_done=False,
# (float) Weight uniform initialization range in the last output layer.
init_w=3e-3,
# (int) The numbers of action sample each at every state s from a uniform-at-random.
num_actions=10,
# (bool) Whether use lagrange multiplier in q value loss.
with_lagrange=False,
# (float) The threshold for difference in Q-values.
lagrange_thresh=-1,
# (float) Loss weight for conservative item.
min_q_weight=1.0,
# (bool) Whether to use entropy in target q.
with_q_entropy=False,
),
eval=dict(), # for compatibility
)
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For SAC, it mainly \
contains three optimizers, algorithm-specific arguments such as gamma, min_q_weight, with_lagrange and \
with_q_entropy, main and target model. Especially, the ``auto_alpha`` mechanism for balancing max entropy \
target is also initialized here.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._twin_critic = self._cfg.model.twin_critic
self._num_actions = self._cfg.learn.num_actions
self._min_q_version = 3
self._min_q_weight = self._cfg.learn.min_q_weight
self._with_lagrange = self._cfg.learn.with_lagrange and (self._lagrange_thresh > 0)
self._lagrange_thresh = self._cfg.learn.lagrange_thresh
if self._with_lagrange:
self.target_action_gap = self._lagrange_thresh
self.log_alpha_prime = torch.tensor(0.).to(self._device).requires_grad_()
self.alpha_prime_optimizer = Adam(
[self.log_alpha_prime],
lr=self._cfg.learn.learning_rate_q,
)
self._with_q_entropy = self._cfg.learn.with_q_entropy
# Weight Init
init_w = self._cfg.learn.init_w
self._model.actor_head[-1].mu.weight.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].mu.bias.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].log_sigma_layer.weight.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].log_sigma_layer.bias.data.uniform_(-init_w, init_w)
if self._twin_critic:
self._model.critic_head[0][-1].last.weight.data.uniform_(-init_w, init_w)
self._model.critic_head[0][-1].last.bias.data.uniform_(-init_w, init_w)
self._model.critic_head[1][-1].last.weight.data.uniform_(-init_w, init_w)
self._model.critic_head[1][-1].last.bias.data.uniform_(-init_w, init_w)
else:
self._model.critic_head[2].last.weight.data.uniform_(-init_w, init_w)
self._model.critic_head[-1].last.bias.data.uniform_(-init_w, init_w)
# Optimizers
self._optimizer_q = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_q,
)
self._optimizer_policy = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_policy,
)
# Algorithm config
self._gamma = self._cfg.learn.discount_factor
# Init auto alpha
if self._cfg.learn.auto_alpha:
if self._cfg.learn.target_entropy is None:
assert 'action_shape' in self._cfg.model, "CQL need network model with action_shape variable"
self._target_entropy = -np.prod(self._cfg.model.action_shape)
else:
self._target_entropy = self._cfg.learn.target_entropy
if self._cfg.learn.log_space:
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha]))
self._log_alpha = self._log_alpha.to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha)
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad
self._alpha = self._log_alpha.detach().exp()
self._auto_alpha = True
self._log_space = True
else:
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha)
self._auto_alpha = True
self._log_space = False
else:
self._alpha = torch.tensor(
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32
)
self._auto_alpha = False
# Main and target models
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
self._target_model.reset()
self._forward_learn_cnt = 0
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the offline dataset and then returns the output \
result, including various training information such as loss, action, priority.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For CQL, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight``.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
loss_dict = {}
data = default_preprocess_learn(
data,
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=False
)
if len(data.get('action').shape) == 1:
data['action'] = data['action'].reshape(-1, 1)
if self._cuda:
data = to_device(data, self._device)
self._learn_model.train()
self._target_model.train()
obs = data['obs']
next_obs = data['next_obs']
reward = data['reward']
done = data['done']
# 1. predict q value
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
# 2. predict target value
with torch.no_grad():
(mu, sigma) = self._learn_model.forward(next_obs, mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
next_action = torch.tanh(pred)
y = 1 - next_action.pow(2) + 1e-6
next_log_prob = dist.log_prob(pred).unsqueeze(-1)
next_log_prob = next_log_prob - torch.log(y).sum(-1, keepdim=True)
next_data = {'obs': next_obs, 'action': next_action}
target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value']
# the value of a policy according to the maximum entropy objective
if self._twin_critic:
# find min one as target q value
if self._with_q_entropy:
target_q_value = torch.min(target_q_value[0],
target_q_value[1]) - self._alpha * next_log_prob.squeeze(-1)
else:
target_q_value = torch.min(target_q_value[0], target_q_value[1])
else:
if self._with_q_entropy:
target_q_value = target_q_value - self._alpha * next_log_prob.squeeze(-1)
# 3. compute q loss
if self._twin_critic:
q_data0 = v_1step_td_data(q_value[0], target_q_value, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample0 = v_1step_td_error(q_data0, self._gamma)
q_data1 = v_1step_td_data(q_value[1], target_q_value, reward, done, data['weight'])
loss_dict['twin_critic_loss'], td_error_per_sample1 = v_1step_td_error(q_data1, self._gamma)
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2
else:
q_data = v_1step_td_data(q_value, target_q_value, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample = v_1step_td_error(q_data, self._gamma)
# 4. add CQL
curr_actions_tensor, curr_log_pis = self._get_policy_actions(data, self._num_actions)
new_curr_actions_tensor, new_log_pis = self._get_policy_actions({'obs': next_obs}, self._num_actions)
random_actions_tensor = torch.FloatTensor(curr_actions_tensor.shape).uniform_(-1,
1).to(curr_actions_tensor.device)
obs_repeat = obs.unsqueeze(1).repeat(1, self._num_actions,
1).view(obs.shape[0] * self._num_actions, obs.shape[1])
act_repeat = data['action'].unsqueeze(1).repeat(1, self._num_actions, 1).view(
data['action'].shape[0] * self._num_actions, data['action'].shape[1]
)
q_rand = self._get_q_value({'obs': obs_repeat, 'action': random_actions_tensor})
# q2_rand = self._get_q_value(obs, random_actions_tensor, network=self.qf2)
q_curr_actions = self._get_q_value({'obs': obs_repeat, 'action': curr_actions_tensor})
# q2_curr_actions = self._get_tensor_values(obs, curr_actions_tensor, network=self.qf2)
q_next_actions = self._get_q_value({'obs': obs_repeat, 'action': new_curr_actions_tensor})
# q2_next_actions = self._get_tensor_values(obs, new_curr_actions_tensor, network=self.qf2)
cat_q1 = torch.cat([q_rand[0], q_value[0].reshape(-1, 1, 1), q_next_actions[0], q_curr_actions[0]], 1)
cat_q2 = torch.cat([q_rand[1], q_value[1].reshape(-1, 1, 1), q_next_actions[1], q_curr_actions[1]], 1)
std_q1 = torch.std(cat_q1, dim=1)
std_q2 = torch.std(cat_q2, dim=1)
if self._min_q_version == 3:
# importance sampled version
random_density = np.log(0.5 ** curr_actions_tensor.shape[-1])
cat_q1 = torch.cat(
[
q_rand[0] - random_density, q_next_actions[0] - new_log_pis.detach(),
q_curr_actions[0] - curr_log_pis.detach()
], 1
)
cat_q2 = torch.cat(
[
q_rand[1] - random_density, q_next_actions[1] - new_log_pis.detach(),
q_curr_actions[1] - curr_log_pis.detach()
], 1
)
min_qf1_loss = torch.logsumexp(cat_q1, dim=1).mean() * self._min_q_weight
min_qf2_loss = torch.logsumexp(cat_q2, dim=1).mean() * self._min_q_weight
"""Subtract the log likelihood of data"""
min_qf1_loss = min_qf1_loss - q_value[0].mean() * self._min_q_weight
min_qf2_loss = min_qf2_loss - q_value[1].mean() * self._min_q_weight
if self._with_lagrange:
alpha_prime = torch.clamp(self.log_alpha_prime.exp(), min=0.0, max=1000000.0)
min_qf1_loss = alpha_prime * (min_qf1_loss - self.target_action_gap)
min_qf2_loss = alpha_prime * (min_qf2_loss - self.target_action_gap)
self.alpha_prime_optimizer.zero_grad()
alpha_prime_loss = (-min_qf1_loss - min_qf2_loss) * 0.5
alpha_prime_loss.backward(retain_graph=True)
self.alpha_prime_optimizer.step()
loss_dict['critic_loss'] += min_qf1_loss
if self._twin_critic:
loss_dict['twin_critic_loss'] += min_qf2_loss
# 5. update q network
self._optimizer_q.zero_grad()
loss_dict['critic_loss'].backward(retain_graph=True)
if self._twin_critic:
loss_dict['twin_critic_loss'].backward()
self._optimizer_q.step()
# 6. evaluate to get action distribution
(mu, sigma) = self._learn_model.forward(data['obs'], mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
action = torch.tanh(pred)
y = 1 - action.pow(2) + 1e-6
log_prob = dist.log_prob(pred).unsqueeze(-1)
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True)
eval_data = {'obs': obs, 'action': action}
new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value']
if self._twin_critic:
new_q_value = torch.min(new_q_value[0], new_q_value[1])
# 8. compute policy loss
policy_loss = (self._alpha * log_prob - new_q_value.unsqueeze(-1)).mean()
loss_dict['policy_loss'] = policy_loss
# 9. update policy network
self._optimizer_policy.zero_grad()
loss_dict['policy_loss'].backward()
self._optimizer_policy.step()
# 10. compute alpha loss
if self._auto_alpha:
if self._log_space:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = -(self._log_alpha * log_prob.detach()).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha = self._log_alpha.detach().exp()
else:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = -(self._alpha * log_prob.detach()).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha = max(0, self._alpha)
loss_dict['total_loss'] = sum(loss_dict.values())
# =============
# after update
# =============
self._forward_learn_cnt += 1
# target update
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr_q': self._optimizer_q.defaults['lr'],
'cur_lr_p': self._optimizer_policy.defaults['lr'],
'priority': td_error_per_sample.abs().tolist(),
'td_error': td_error_per_sample.detach().mean().item(),
'alpha': self._alpha.item(),
'target_q_value': target_q_value.detach().mean().item(),
**loss_dict
}
def _get_policy_actions(self, data: Dict, num_actions: int = 10, epsilon: float = 1e-6) -> List:
# evaluate to get action distribution
obs = data['obs']
obs = obs.unsqueeze(1).repeat(1, num_actions, 1).view(obs.shape[0] * num_actions, obs.shape[1])
(mu, sigma) = self._learn_model.forward(obs, mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
action = torch.tanh(pred)
# evaluate action log prob depending on Jacobi determinant.
y = 1 - action.pow(2) + epsilon
log_prob = dist.log_prob(pred).unsqueeze(-1)
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True)
return action, log_prob.view(-1, num_actions, 1)
def _get_q_value(self, data: Dict, keep: bool = True) -> torch.Tensor:
new_q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
if self._twin_critic:
new_q_value = [value.view(-1, self._num_actions, 1) for value in new_q_value]
else:
new_q_value = new_q_value.view(-1, self._num_actions, 1)
if self._twin_critic and not keep:
new_q_value = torch.min(new_q_value[0], new_q_value[1])
return new_q_value
@POLICY_REGISTRY.register('discrete_cql')
class DiscreteCQLPolicy(QRDQNPolicy):
"""
Overview:
Policy class of discrete CQL algorithm in discrete action space environments.
Paper link: https://arxiv.org/abs/2006.04779.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='discrete_cql',
# (bool) Whether to use cuda for policy.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=False,
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.97,
# (int) N-step reward for target q_value estimation
nstep=1,
# learn_mode config
learn=dict(
# (int) How many updates (iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
update_per_collect=1,
# (int) Minibatch size for one gradient descent.
batch_size=64,
# (float) Learning rate for soft q network.
learning_rate=0.001,
# (int) Frequence of target network update.
target_update_freq=100,
# (bool) Whether ignore done(usually for max step termination env).
ignore_done=False,
# (float) Loss weight for conservative item.
min_q_weight=1.0,
),
eval=dict(), # for compatibility
)
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For DiscreteCQL, it mainly \
contains the optimizer, algorithm-specific arguments such as gamma, nstep and min_q_weight, main and \
target model. This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._min_q_weight = self._cfg.learn.min_q_weight
self._priority = self._cfg.priority
# Optimizer
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
self._gamma = self._cfg.discount_factor
self._nstep = self._cfg.nstep
# use wrapper instead of plugin
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='assign',
update_kwargs={'freq': self._cfg.learn.target_update_freq}
)
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._learn_model.reset()
self._target_model.reset()
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the offline dataset and then returns the output \
result, including various training information such as loss, action, priority.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For DiscreteCQL, each element in list is a dict containing at least the following keys: ``obs``, \
``action``, ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys like ``weight`` \
and ``value_gamma`` for nstep return computation.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
data = default_preprocess_learn(
data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True
)
if self._cuda:
data = to_device(data, self._device)
if data['action'].dim() == 2 and data['action'].shape[-1] == 1:
data['action'] = data['action'].squeeze(-1)
# ====================
# Q-learning forward
# ====================
self._learn_model.train()
self._target_model.train()
# Current q value (main model)
ret = self._learn_model.forward(data['obs'])
q_value, tau = ret['q'], ret['tau']
# Target q value
with torch.no_grad():
target_q_value = self._target_model.forward(data['next_obs'])['q']
# Max q value action (main model)
target_q_action = self._learn_model.forward(data['next_obs'])['action']
# add CQL
# 1. chose action and compute q in dataset.
# 2. compute value loss(negative_sampling - dataset_expec)
replay_action_one_hot = F.one_hot(data['action'], self._cfg.model.action_shape)
replay_chosen_q = (q_value.mean(-1) * replay_action_one_hot).sum(dim=1)
dataset_expec = replay_chosen_q.mean()
negative_sampling = torch.logsumexp(q_value.mean(-1), dim=1).mean()
min_q_loss = negative_sampling - dataset_expec
data_n = qrdqn_nstep_td_data(
q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], tau, data['weight']
)
value_gamma = data.get('value_gamma')
loss, td_error_per_sample = qrdqn_nstep_td_error(
data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma
)
loss += self._min_q_weight * min_q_loss
# ====================
# Q-learning update
# ====================
self._optimizer.zero_grad()
loss.backward()
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
self._optimizer.step()
# =============
# after update
# =============
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': loss.item(),
'priority': td_error_per_sample.abs().tolist(),
'q_target': target_q_value.mean().item(),
'q_value': q_value.mean().item(),
# Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
# '[histogram]action_distribution': data['action'],
}
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
return ['cur_lr', 'total_loss', 'q_target', 'q_value']
|