File size: 16,792 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import math
import torch
import torch.nn as nn
import copy
from torch.optim import Adam, SGD, AdamW
from torch.optim.lr_scheduler import LambdaLR
import logging
from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple
from easydict import EasyDict
from ding.policy import Policy
from ding.model import model_wrap
from ding.torch_utils import to_device, to_list
from ding.utils import EasyTimer
from ding.utils.data import default_collate, default_decollate
from ding.rl_utils import get_nstep_return_data, get_train_sample
from ding.utils import POLICY_REGISTRY
from ding.torch_utils.loss.cross_entropy_loss import LabelSmoothCELoss
@POLICY_REGISTRY.register('bc')
class BehaviourCloningPolicy(Policy):
"""
Overview:
Behaviour Cloning (BC) policy class, which supports both discrete and continuous action space. \
The policy is trained by supervised learning, and the data is a offline dataset collected by expert.
"""
config = dict(
type='bc',
cuda=False,
on_policy=False,
continuous=False,
action_shape=19,
learn=dict(
update_per_collect=1,
batch_size=32,
learning_rate=1e-5,
lr_decay=False,
decay_epoch=30,
decay_rate=0.1,
warmup_lr=1e-4,
warmup_epoch=3,
optimizer='SGD',
momentum=0.9,
weight_decay=1e-4,
ce_label_smooth=False,
show_accuracy=False,
tanh_mask=False, # if actions always converge to 1 or -1, use this.
),
collect=dict(
unroll_len=1,
noise=False,
noise_sigma=0.2,
noise_range=dict(
min=-0.5,
max=0.5,
),
),
eval=dict(), # for compatibility
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
.. note::
The user can define and use customized network model but must obey the same inferface definition indicated \
by import_names path. For example about discrete BC, its registered name is ``discrete_bc`` and the \
import_names is ``ding.model.template.bc``.
"""
if self._cfg.continuous:
return 'continuous_bc', ['ding.model.template.bc']
else:
return 'discrete_bc', ['ding.model.template.bc']
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For BC, it mainly contains \
optimizer, algorithm-specific arguments such as lr_scheduler, loss, etc. \
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
assert self._cfg.learn.optimizer in ['SGD', 'Adam'], self._cfg.learn.optimizer
if self._cfg.learn.optimizer == 'SGD':
self._optimizer = SGD(
self._model.parameters(),
lr=self._cfg.learn.learning_rate,
weight_decay=self._cfg.learn.weight_decay,
momentum=self._cfg.learn.momentum
)
elif self._cfg.learn.optimizer == 'Adam':
if self._cfg.learn.weight_decay is None:
self._optimizer = Adam(
self._model.parameters(),
lr=self._cfg.learn.learning_rate,
)
else:
self._optimizer = AdamW(
self._model.parameters(),
lr=self._cfg.learn.learning_rate,
weight_decay=self._cfg.learn.weight_decay
)
if self._cfg.learn.lr_decay:
def lr_scheduler_fn(epoch):
if epoch <= self._cfg.learn.warmup_epoch:
return self._cfg.learn.warmup_lr / self._cfg.learn.learning_rate
else:
ratio = (epoch - self._cfg.learn.warmup_epoch) // self._cfg.learn.decay_epoch
return math.pow(self._cfg.learn.decay_rate, ratio)
self._lr_scheduler = LambdaLR(self._optimizer, lr_scheduler_fn)
self._timer = EasyTimer(cuda=True)
self._learn_model = model_wrap(self._model, 'base')
self._learn_model.reset()
if self._cfg.continuous:
if self._cfg.loss_type == 'l1_loss':
self._loss = nn.L1Loss()
elif self._cfg.loss_type == 'mse_loss':
self._loss = nn.MSELoss()
else:
raise KeyError("not support loss type: {}".format(self._cfg.loss_type))
else:
if not self._cfg.learn.ce_label_smooth:
self._loss = nn.CrossEntropyLoss()
else:
self._loss = LabelSmoothCELoss(0.1)
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as loss and time.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For BC, each element in list is a dict containing at least the following keys: ``obs``, ``action``.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
if isinstance(data, list):
data = default_collate(data)
if self._cuda:
data = to_device(data, self._device)
self._learn_model.train()
with self._timer:
obs, action = data['obs'], data['action'].squeeze()
if self._cfg.continuous:
if self._cfg.learn.tanh_mask:
"""tanh_mask
We mask the action out of range of [tanh(-1),tanh(1)], model will learn information
and produce action in [-1,1]. So the action won't always converge to -1 or 1.
"""
mu = self._eval_model.forward(data['obs'])['action']
bound = 1 - 2 / (math.exp(2) + 1) # tanh(1): (e-e**(-1))/(e+e**(-1))
mask = mu.ge(-bound) & mu.le(bound)
mask_percent = 1 - mask.sum().item() / mu.numel()
if mask_percent > 0.8: # if there is too little data to learn(<80%). So we use all data.
loss = self._loss(mu, action.detach())
else:
loss = self._loss(mu.masked_select(mask), action.masked_select(mask).detach())
else:
mu = self._learn_model.forward(data['obs'])['action']
# When we use bco, action is predicted by idm, gradient is not expected.
loss = self._loss(mu, action.detach())
else:
a_logit = self._learn_model.forward(obs)
# When we use bco, action is predicted by idm, gradient is not expected.
loss = self._loss(a_logit['logit'], action.detach())
if self._cfg.learn.show_accuracy:
# Calculate the overall accuracy and the accuracy of each class
total_accuracy = (a_logit['action'] == action.view(-1)).float().mean()
self.total_accuracy_in_dataset.append(total_accuracy)
logging.info(f'the total accuracy in current train mini-batch is: {total_accuracy.item()}')
for action_unique in to_list(torch.unique(action)):
action_index = (action == action_unique).nonzero(as_tuple=True)[0]
action_accuracy = (a_logit['action'][action_index] == action.view(-1)[action_index]
).float().mean()
if math.isnan(action_accuracy):
action_accuracy = 0.0
self.action_accuracy_in_dataset[action_unique].append(action_accuracy)
logging.info(
f'the accuracy of action {action_unique} in current train mini-batch is: '
f'{action_accuracy.item()}, '
f'(nan means the action does not appear in the mini-batch)'
)
forward_time = self._timer.value
with self._timer:
self._optimizer.zero_grad()
loss.backward()
backward_time = self._timer.value
with self._timer:
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
sync_time = self._timer.value
self._optimizer.step()
cur_lr = [param_group['lr'] for param_group in self._optimizer.param_groups]
cur_lr = sum(cur_lr) / len(cur_lr)
return {
'cur_lr': cur_lr,
'total_loss': loss.item(),
'forward_time': forward_time,
'backward_time': backward_time,
'sync_time': sync_time,
}
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
return ['cur_lr', 'total_loss', 'forward_time', 'backward_time', 'sync_time']
def _init_eval(self):
"""
Overview:
Initialize the eval mode of policy, including related attributes and modules. For BC, it contains the \
eval model to greedily select action with argmax q_value mechanism for discrete action space.
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
"""
if self._cfg.continuous:
self._eval_model = model_wrap(self._model, wrapper_name='base')
else:
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
action to interact with the envs.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
key of the dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
tensor_input = isinstance(data, torch.Tensor)
if tensor_input:
data = default_collate(list(data))
else:
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data)
if self._cuda:
output = to_device(output, 'cpu')
if tensor_input:
return output
else:
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _init_collect(self) -> None:
"""
Overview:
BC policy uses offline dataset so it does not need to collect data. However, sometimes we need to use the \
trained BC policy to collect data for other purposes.
"""
self._unroll_len = self._cfg.collect.unroll_len
if self._cfg.continuous:
self._collect_model = model_wrap(
self._model,
wrapper_name='action_noise',
noise_type='gauss',
noise_kwargs={
'mu': 0.0,
'sigma': self._cfg.collect.noise_sigma.start
},
noise_range=self._cfg.collect.noise_range
)
else:
self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample')
self._collect_model.reset()
def _forward_collect(self, data: Dict[int, Any], **kwargs) -> Dict[int, Any]:
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
if self._cfg.continuous:
# output = self._collect_model.forward(data)
output = self._collect_model.forward(data, **kwargs)
else:
output = self._collect_model.forward(data, **kwargs)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: Any, policy_output: dict, timestep: namedtuple) -> dict:
transition = {
'obs': obs,
'next_obs': timestep.obs,
'action': policy_output['action'],
'reward': timestep.reward,
'done': timestep.done,
}
return EasyDict(transition)
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
data = get_nstep_return_data(data, 1, 1)
return get_train_sample(data, self._unroll_len)
|