File size: 16,201 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import copy
import torch
from ding.torch_utils import Adam, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('atoc')
class ATOCPolicy(Policy):
r"""
Overview:
Policy class of ATOC algorithm.
Interface:
__init__, set_setting, __repr__, state_dict_handle
Property:
learn_mode, collect_mode, eval_mode
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='atoc',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same)
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
model=dict(
# (bool) Whether to use communication module in ATOC, if not, it is a multi-agent DDPG
communication=True,
# (int) The number of thought size
thought_size=8,
# (int) The number of agent for each communication group
agent_per_group=2,
),
learn=dict(
# (int) Collect n_sample data, update model n_iteration time
update_per_collect=5,
# (int) The number of data for a train iteration
batch_size=64,
# (float) Gradient-descent step size of actor
learning_rate_actor=0.001,
# (float) Gradient-descent step size of critic
learning_rate_critic=0.001,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) Target network update weight, theta * new_w + (1 - theta) * old_w, defaults in [0, 0.1]
target_theta=0.005,
# (float) Discount factor for future reward, defaults int [0, 1]
discount_factor=0.99,
# (bool) Whether to use communication module in ATOC, if not, it is a multi-agent DDPG
communication=True,
# (int) The frequency of actor update, each critic update
actor_update_freq=1,
# (bool) Whether use noise in action output when learning
noise=True,
# (float) The std of noise distribution for target policy smooth
noise_sigma=0.15,
# (float, float) The minimum and maximum value of noise
noise_range=dict(
min=-0.5,
max=0.5,
),
# (bool) Whether to use reward batch norm in the total batch
reward_batch_norm=False,
ignore_done=False,
),
collect=dict(
# (int) Collect n_sample data, update model n_iteration time
# n_sample=64,
# (int) Unroll length of a train iteration(gradient update step)
unroll_len=1,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) The std of noise distribution for exploration
noise_sigma=0.4,
),
eval=dict(),
other=dict(
replay_buffer=dict(
# (int) The max size of replay buffer
replay_buffer_size=100000,
# (int) The max use count of data, if count is bigger than this value, the data will be removed
max_use=10,
),
),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'atoc', ['ding.model.template.atoc']
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init actor and critic optimizers, algorithm config, main and target models.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
assert not self._priority and not self._priority_IS_weight
# algorithm config
self._communication = self._cfg.learn.communication
self._gamma = self._cfg.learn.discount_factor
self._actor_update_freq = self._cfg.learn.actor_update_freq
# actor and critic optimizer
self._optimizer_actor = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_actor,
)
self._optimizer_critic = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_critic,
)
if self._communication:
self._optimizer_actor_attention = Adam(
self._model.actor.attention.parameters(),
lr=self._cfg.learn.learning_rate_actor,
)
self._reward_batch_norm = self._cfg.learn.reward_batch_norm
# main and target models
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
if self._cfg.learn.noise:
self._target_model = model_wrap(
self._target_model,
wrapper_name='action_noise',
noise_type='gauss',
noise_kwargs={
'mu': 0.0,
'sigma': self._cfg.learn.noise_sigma
},
noise_range=self._cfg.learn.noise_range
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
self._target_model.reset()
self._forward_learn_cnt = 0 # count iterations
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs']
Returns:
- info_dict (:obj:`Dict[str, Any]`): Including at least actor and critic lr, different losses.
"""
loss_dict = {}
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
if self._cuda:
data = to_device(data, self._device)
# ====================
# critic learn forward
# ====================
self._learn_model.train()
self._target_model.train()
next_obs = data['next_obs']
reward = data['reward']
if self._reward_batch_norm:
reward = (reward - reward.mean()) / (reward.std() + 1e-8)
# current q value
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
# target q value.
with torch.no_grad():
next_action = self._target_model.forward(next_obs, mode='compute_actor')['action']
next_data = {'obs': next_obs, 'action': next_action}
target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value']
td_data = v_1step_td_data(q_value.mean(-1), target_q_value.mean(-1), reward, data['done'], data['weight'])
critic_loss, td_error_per_sample = v_1step_td_error(td_data, self._gamma)
loss_dict['critic_loss'] = critic_loss
# ================
# critic update
# ================
self._optimizer_critic.zero_grad()
critic_loss.backward()
self._optimizer_critic.step()
# ===============================
# actor learn forward and update
# ===============================
# actor updates every ``self._actor_update_freq`` iters
if (self._forward_learn_cnt + 1) % self._actor_update_freq == 0:
if self._communication:
output = self._learn_model.forward(data['obs'], mode='compute_actor', get_delta_q=False)
output['delta_q'] = data['delta_q']
attention_loss = self._learn_model.forward(output, mode='optimize_actor_attention')['loss']
loss_dict['attention_loss'] = attention_loss
self._optimizer_actor_attention.zero_grad()
attention_loss.backward()
self._optimizer_actor_attention.step()
output = self._learn_model.forward(data['obs'], mode='compute_actor', get_delta_q=False)
critic_input = {'obs': data['obs'], 'action': output['action']}
actor_loss = -self._learn_model.forward(critic_input, mode='compute_critic')['q_value'].mean()
loss_dict['actor_loss'] = actor_loss
# actor update
self._optimizer_actor.zero_grad()
actor_loss.backward()
self._optimizer_actor.step()
# =============
# after update
# =============
loss_dict['total_loss'] = sum(loss_dict.values())
self._forward_learn_cnt += 1
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr_actor': self._optimizer_actor.defaults['lr'],
'cur_lr_critic': self._optimizer_critic.defaults['lr'],
'priority': td_error_per_sample.abs().tolist(),
'q_value': q_value.mean().item(),
**loss_dict,
}
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'optimizer_actor': self._optimizer_actor.state_dict(),
'optimizer_critic': self._optimizer_critic.state_dict(),
'optimize_actor_attention': self._optimizer_actor_attention.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer_actor.load_state_dict(state_dict['optimizer_actor'])
self._optimizer_critic.load_state_dict(state_dict['optimizer_critic'])
self._optimizer_actor_attention.load_state_dict(state_dict['optimize_actor_attention'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``.
Init traj and unroll length, collect model.
"""
self._unroll_len = self._cfg.collect.unroll_len
# collect model
self._collect_model = model_wrap(
self._model,
wrapper_name='action_noise',
noise_type='gauss',
noise_kwargs={
'mu': 0.0,
'sigma': self._cfg.collect.noise_sigma
},
noise_range=None, # no noise clip in actor
)
self._collect_model.reset()
def _forward_collect(self, data: dict) -> dict:
r"""
Overview:
Forward function of collect mode.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, mode='compute_actor', get_delta_q=True)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> Dict[str, Any]:
r"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least ['action']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \
(here 'obs' indicates obs after env step, i.e. next_obs).
Return:
- transition (:obj:`Dict[str, Any]`): Dict type transition data.
"""
if self._communication:
transition = {
'obs': obs,
'next_obs': timestep.obs,
'action': model_output['action'],
'delta_q': model_output['delta_q'],
'reward': timestep.reward,
'done': timestep.done,
}
else:
transition = {
'obs': obs,
'next_obs': timestep.obs,
'action': model_output['action'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
if self._communication:
delta_q_batch = [d['delta_q'] for d in data]
delta_min = torch.stack(delta_q_batch).min()
delta_max = torch.stack(delta_q_batch).max()
for i in range(len(data)):
data[i]['delta_q'] = (data[i]['delta_q'] - delta_min) / (delta_max - delta_min + 1e-8)
return get_train_sample(data, self._unroll_len)
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model. Unlike learn and collect model, eval model does not need noise.
"""
self._eval_model = model_wrap(self._model, wrapper_name='base')
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function of eval mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
r"""
Overview:
Return variables' name if variables are to used in monitor.
Returns:
- vars (:obj:`List[str]`): Variables' name list.
"""
return [
'cur_lr_actor',
'cur_lr_critic',
'critic_loss',
'actor_loss',
'attention_loss',
'total_loss',
'q_value',
]
|