File size: 3,390 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from easydict import EasyDict

# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
collector_env_num = 8
n_episode = 8
evaluator_env_num = 3
num_simulations = 25
update_per_collect = 100
batch_size = 256
max_env_step = int(1e5)
reanalyze_ratio = 0
# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================

cartpole_muzero_config = dict(
    exp_name=f'data_mz_ctree/cartpole_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed0',
    env=dict(
        env_name='CartPole-v0',
        continuous=False,
        manually_discretization=False,
        collector_env_num=collector_env_num,
        evaluator_env_num=evaluator_env_num,
        n_evaluator_episode=evaluator_env_num,
        manager=dict(shared_memory=False, ),
    ),
    policy=dict(
        model=dict(
            observation_shape=4,
            action_space_size=2,
            model_type='mlp', 
            lstm_hidden_size=128,
            latent_state_dim=128,
            self_supervised_learning_loss=True,  # NOTE: default is False.
            discrete_action_encoding_type='one_hot',
            norm_type='BN', 
        ),
        cuda=True,
        env_type='not_board_games',
        action_type='varied_action_space',
        game_segment_length=50,
        update_per_collect=update_per_collect,
        batch_size=batch_size,
        optim_type='Adam',
        lr_piecewise_constant_decay=False,
        learning_rate=0.003,
        ssl_loss_weight=2,  # NOTE: default is 0.
        num_simulations=num_simulations,
        reanalyze_ratio=reanalyze_ratio,
        n_episode=n_episode,
        eval_freq=int(2e2),
        replay_buffer_size=int(1e6),  # the size/capacity of replay_buffer, in the terms of transitions.
        collector_env_num=collector_env_num,
        evaluator_env_num=evaluator_env_num,
    ),
)

cartpole_muzero_config = EasyDict(cartpole_muzero_config)
main_config = cartpole_muzero_config

cartpole_muzero_create_config = dict(
    env=dict(
        type='cartpole_lightzero',
        import_names=['zoo.classic_control.cartpole.envs.cartpole_lightzero_env'],
    ),
    env_manager=dict(type='subprocess'),
    policy=dict(
        type='muzero',
        import_names=['lzero.policy.muzero'],
    ),
)
cartpole_muzero_create_config = EasyDict(cartpole_muzero_create_config)
create_config = cartpole_muzero_create_config

if __name__ == "__main__":
    # Users can use different train entry by specifying the entry_type.
    entry_type = "train_muzero"  # options={"train_muzero", "train_muzero_with_gym_env"}

    if entry_type == "train_muzero":
        from lzero.entry import train_muzero
    elif entry_type == "train_muzero_with_gym_env":
        """
        The ``train_muzero_with_gym_env`` entry means that the environment used in the training process is generated by wrapping the original gym environment with LightZeroEnvWrapper.
        Users can refer to lzero/envs/wrappers for more details.
        """
        from lzero.entry import train_muzero_with_gym_env as train_muzero

    train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step)