File size: 2,935 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
from easydict import EasyDict
stocks_dqn_config = dict(
exp_name='stocks_dqn_seed0',
env=dict(
# Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess'
# Env number respectively for collector and evaluator.
collector_env_num=8,
evaluator_env_num=8,
env_id='stocks-v0',
n_evaluator_episode=8,
stop_value=2,
# one trading year.
eps_length=253,
# associated with the feature length.
window_size=20,
# the path to save result image.
save_path='./fig/',
# the raw data file name
stocks_data_filename='STOCKS_GOOGL',
# the stocks range percentage used by train/test.
# if one of them is None, train & test set will use all data by default.
train_range=None,
test_range=None,
),
policy=dict(
# Whether to use cuda for network.
cuda=True,
model=dict(
obs_shape=62,
action_shape=5,
encoder_hidden_size_list=[128],
head_layer_num=1,
# Whether to use dueling head.
dueling=True,
),
# Reward's future discount factor, aka. gamma.
discount_factor=0.99,
# How many steps in td error.
nstep=5,
# learn_mode config
learn=dict(
update_per_collect=10,
batch_size=64,
learning_rate=0.001,
# Frequency of target network update.
target_update_freq=100,
ignore_done=True,
),
# collect_mode config
collect=dict(
# You can use either "n_sample" or "n_episode" in collector.collect.
# Get "n_sample" samples per collect.
n_sample=64,
# Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
),
# command_mode config
other=dict(
# Epsilon greedy with decay.
eps=dict(
# Decay type. Support ['exp', 'linear'].
type='exp',
start=0.95,
end=0.1,
decay=50000,
),
replay_buffer=dict(replay_buffer_size=100000, )
),
),
)
stocks_dqn_config = EasyDict(stocks_dqn_config)
main_config = stocks_dqn_config
stocks_dqn_create_config = dict(
env=dict(
type='stocks-v0',
import_names=['dizoo.gym_anytrading.envs.stocks_env'],
),
env_manager=dict(type='base'),
policy=dict(type='dqn', ),
evaluator=dict(
type='trading_interaction',
import_names=['dizoo.gym_anytrading.worker'],
),
)
stocks_dqn_create_config = EasyDict(stocks_dqn_create_config)
create_config = stocks_dqn_create_config
if __name__ == "__main__":
from ding.entry import serial_pipeline
serial_pipeline([main_config, create_config], seed=0, max_env_step=int(1e7))
|