File size: 2,216 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import os
import gym
import torch
from tensorboardX import SummaryWriter
from easydict import EasyDict
from functools import partial
from ding.config import compile_config
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer
from ding.envs import BaseEnvManager, DingEnvWrapper
from ding.envs import get_vec_env_setting
from ding.policy import DDPGPolicy
from ding.model import ContinuousQAC
from ding.utils import set_pkg_seed
from ding.rl_utils import get_epsilon_greedy_fn
from dizoo.gym_hybrid.config.gym_hybrid_ddpg_config import gym_hybrid_ddpg_config, gym_hybrid_ddpg_create_config
def main(main_cfg, create_cfg, seed=0):
# Specify evaluation arguments
main_cfg.policy.load_path = './ckpt_best.pth.tar'
main_cfg.env.replay_path = './'
main_cfg.env.evaluator_env_num = 1 # only 1 env for save replay
cfg = compile_config(main_cfg, seed=seed, auto=True, create_cfg=create_cfg, save_cfg=True)
# Create main components: env, policy
env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env)
evaluator_env = BaseEnvManager([partial(env_fn, cfg=c) for c in evaluator_env_cfg], cfg.env.manager)
evaluator_env.enable_save_replay(cfg.env.replay_path) # switch save replay interface
# Set random seed for all package and instance
evaluator_env.seed(seed, dynamic_seed=False)
set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
# Set up RL Policy
model = ContinuousQAC(**cfg.policy.model)
policy = DDPGPolicy(cfg.policy, model=model)
policy.eval_mode.load_state_dict(torch.load(cfg.policy.load_path, map_location='cpu'))
# evaluate
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
evaluator = InteractionSerialEvaluator(
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name
)
evaluator.eval()
if __name__ == "__main__":
# gym_hybrid environmrnt rendering is using API from "gym.envs.classic_control.rendering"
# which is abandoned in gym >= 0.22.0, please check the gym version before rendering.
main(gym_hybrid_ddpg_config, gym_hybrid_ddpg_create_config, seed=0)
|