File size: 8,689 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gfootball
import gfootball.env as football_env

import copy
from collections import namedtuple
from typing import List, Any, Optional

import numpy as np
from ding.envs import BaseEnv
from ding.utils import ENV_REGISTRY
from .action.gfootball_action_runner import GfootballRawActionRunner
from .obs.gfootball_obs_runner import GfootballObsRunner
from .reward.gfootball_reward_runner import GfootballRewardRunner
import gym
from ding.torch_utils import to_ndarray, to_list
import os
from matplotlib import animation
import matplotlib.pyplot as plt
from ding.envs import ObsPlusPrevActRewWrapper


@ENV_REGISTRY.register('gfootball')
class GfootballEnv(BaseEnv):
    timestep = namedtuple('GfootballTimestep', ['obs', 'reward', 'done', 'info'])

    info_template = namedtuple('GFootballEnvInfo', ['obs_space', 'act_space', 'rew_space'])

    def __init__(self, cfg):
        self._cfg = cfg
        self._action_helper = GfootballRawActionRunner(cfg)
        self._reward_helper = GfootballRewardRunner(cfg)
        self._obs_helper = GfootballObsRunner(cfg)
        self.save_replay = cfg.get("save_replay", False)
        self._launch_env_flag = False
        self._launch_env()
        self.env_name = self._cfg.env_name
        self._save_replay_gif = self._cfg.save_replay_gif

    def _launch_env(self, gui=False):

        self._env = football_env.create_environment(
            # default env_name="11_vs_11_stochastic",
            env_name=self._cfg.env_name,
            representation='raw',
            stacked=False,
            logdir='./tmp/football',
            write_goal_dumps=False,
            write_full_episode_dumps=self.save_replay,
            write_video=self.save_replay,
            render=False
        )
        self._launch_env_flag = True

    def reset(self) -> dict:
        if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward:
            # for NGU
            self.prev_action = -1  # null action
            self.prev_reward_extrinsic = 0  # null reward

        if self._save_replay_gif:
            self._frames = []
        if not self._launch_env_flag:
            self._launch_env()
        self._football_obs = self._env.reset()[0]
        self._reward_helper.reset()
        self._obs_helper.reset()
        self._action_helper.reset()
        self._observation_space = gym.spaces.Dict(
            {
                'match': gym.spaces.Dict(
                    {
                        k: gym.spaces.Discrete(v['max']) if v['dinfo'] == 'one-hot' else
                        gym.spaces.Box(low=np.array(v['min']), high=np.array(v['max']), dtype=np.float32)
                        for k, v in self._obs_helper.info['match'].value.items()
                    }
                ),
                'player': gym.spaces.Dict(
                    {
                        k: gym.spaces.Discrete(v['max']) if v['dinfo'] == 'one-hot' else
                        gym.spaces.Box(low=np.array(v['min']), high=np.array(v['max']), dtype=np.float32)
                        for k, v in self._obs_helper.info['player'].value['players'].items()
                    }
                )
            }
        )
        self._action_space = gym.spaces.Discrete(self._action_helper.info.shape[0])
        self._reward_space = gym.spaces.Box(
            low=self._reward_helper.info.value['min'],
            high=self._reward_helper.info.value['max'],
            shape=self._reward_helper.info.shape,
            dtype=np.float32
        )

        self.obs = self._obs_helper.get(self)

        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward:
            # for NGU
            return {
                'obs': {
                    'processed_obs': self.obs,
                    'raw_obs': self._football_obs
                },
                'prev_action': self.prev_action,
                'prev_reward_extrinsic': self.prev_reward_extrinsic
            }
        else:
            return {'processed_obs': self.obs, 'raw_obs': self._football_obs}

    def step(self, action: np.array) -> 'GfootballEnv.timestep':
        assert self._launch_env_flag
        self.agent_action = action
        action = action.item()
        # env step
        if self._save_replay_gif:
            self._frames.append(self._env.render(mode='rgb_array'))
        self._football_obs, self._reward_of_action, self._is_done, self._info = self._env.step(action)
        self._football_obs = self._football_obs[0]
        self.action = self._action_helper.get(self)
        self.reward = self._reward_helper.get(self)
        self.obs = self._obs_helper.get(self)

        info = {'cum_reward': self._reward_helper.cum_reward}
        if self._is_done:
            info['eval_episode_return'] = to_ndarray(self._reward_helper.cum_reward)
            if self._save_replay_gif:
                path = os.path.join(
                    self._replay_path, '{}_episode_{}.gif'.format(self.env_name, self._save_replay_gif_count)
                )
                self.display_frames_as_gif(self._frames, path)
                self._save_replay_gif_count += 1
                print(f'save one episode replay_gif in {path}')
        # TODO(pu)
        self.reward = to_ndarray(self.reward)

        if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward:
            # for NGU
            self.prev_action = action
            self.prev_reward_extrinsic = self.reward
            obs = {
                'obs': {
                    'processed_obs': self.obs,
                    'raw_obs': self._football_obs
                },
                'prev_action': self.prev_action,
                'prev_reward_extrinsic': self.prev_reward_extrinsic
            }
        else:
            obs = {'processed_obs': self.obs, 'raw_obs': self._football_obs}

        return GfootballEnv.timestep(obs, reward=self.reward, done=self._is_done, info=info)

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def close(self) -> None:
        self._env.close()

    def __repr__(self) -> str:
        return 'GfootballEnv:\n\
                \tobservation[{}]\n\
                \taction[{}]\n\
                \treward[{}]\n'.format(repr(self._obs_helper), repr(self._action_helper), repr(self._reward_helper))

    def info(self) -> 'GfootballEnv.info':
        info_data = {
            'obs_space': self._obs_helper.info,
            'act_space': self._action_helper.info,
            'rew_space': self._reward_helper.info,
        }
        return GfootballEnv.info_template(**info_data)

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        collector_env_num = cfg.pop('collector_env_num', 1)
        cfg = copy.deepcopy(cfg)
        cfg.save_replay = False
        return [cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        evaluator_env_num = cfg.pop('evaluator_env_num', 1)
        cfg = copy.deepcopy(cfg)
        cfg.save_replay = True
        return [cfg for _ in range(evaluator_env_num)]

    def random_action(self) -> np.ndarray:
        random_action = self.action_space.sample()
        random_action = to_ndarray([random_action], dtype=np.int64)
        return random_action

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        if replay_path is None:
            replay_path = './video'
        self._save_replay_gif = True
        self._replay_path = replay_path
        self._save_replay_gif_count = 0

    @staticmethod
    def display_frames_as_gif(frames: list, path: str) -> None:
        patch = plt.imshow(frames[0])
        plt.axis('off')

        def animate(i):
            patch.set_data(frames[i])

        anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames), interval=5)
        anim.save(path, writer='imagemagick', fps=20)


GfootballTimestep = GfootballEnv.timestep