File size: 4,289 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from easydict import EasyDict

nstep = 1
lunarlander_trex_dqn_config = dict(
    exp_name='lunarlander_trex_dqn_seed0',
    env=dict(
        # Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess'
        # Env number respectively for collector and evaluator.
        collector_env_num=8,
        evaluator_env_num=8,
        env_id='LunarLander-v2',
        n_evaluator_episode=8,
        stop_value=200,
    ),
    reward_model=dict(
        type='trex',
        min_snippet_length=30,
        max_snippet_length=100,
        checkpoint_min=1000,
        checkpoint_max=9000,
        checkpoint_step=1000,
        num_snippets=60000,
        learning_rate=1e-5,
        update_per_collect=1,
        # Users should add their own model path here. Model path should lead to a model.
        # Absolute path is recommended.
        # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``.
        expert_model_path='model_path_placeholder',
        # Path where to store the reward model
        reward_model_path='data_path_placeholder + /lunarlander.params',
        # Users should add their own data path here. Data path should lead to a file to store data or load the stored data.
        # Absolute path is recommended.
        # In DI-engine, it is usually located in ``exp_name`` directory
        # e.g. 'exp_name/expert_data.pkl'
        data_path='data_path_placeholder',
    ),
    policy=dict(
        # Whether to use cuda for network.
        cuda=False,
        model=dict(
            obs_shape=8,
            action_shape=4,
            encoder_hidden_size_list=[512, 64],
            # Whether to use dueling head.
            dueling=True,
        ),
        # Reward's future discount factor, aka. gamma.
        discount_factor=0.99,
        # How many steps in td error.
        nstep=nstep,
        # learn_mode config
        learn=dict(
            update_per_collect=10,
            batch_size=64,
            learning_rate=0.001,
            # Frequency of target network update.
            target_update_freq=100,
        ),
        # collect_mode config
        collect=dict(
            # You can use either "n_sample" or "n_episode" in collector.collect.
            # Get "n_sample" samples per collect.
            n_sample=64,
            # Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
        ),
        # command_mode config
        other=dict(
            # Epsilon greedy with decay.
            eps=dict(
                # Decay type. Support ['exp', 'linear'].
                type='exp',
                start=0.95,
                end=0.1,
                decay=50000,
            ),
            replay_buffer=dict(replay_buffer_size=100000, )
        ),
    ),
)
lunarlander_trex_dqn_config = EasyDict(lunarlander_trex_dqn_config)
main_config = lunarlander_trex_dqn_config

lunarlander_trex_dqn_create_config = dict(
    env=dict(
        type='lunarlander',
        import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'],
    ),
    env_manager=dict(type='subprocess'),
    policy=dict(type='dqn'),
)
lunarlander_trex_dqn_create_config = EasyDict(lunarlander_trex_dqn_create_config)
create_config = lunarlander_trex_dqn_create_config

if __name__ == '__main__':
    # Users should first run ``lunarlander_dqn_config.py`` to save models (or checkpoints).
    # Note: Users should check that the checkpoints generated should include iteration_'checkpoint_min'.pth.tar, iteration_'checkpoint_max'.pth.tar with the interval checkpoint_step
    # where checkpoint_max, checkpoint_min, checkpoint_step are specified above.
    import argparse
    import torch
    from ding.entry import trex_collecting_data
    from ding.entry import serial_pipeline_trex
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='please enter abs path for this file')
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu')
    args = parser.parse_args()
    # The function ``trex_collecting_data`` below is to collect episodic data for training the reward model in trex.
    trex_collecting_data(args)
    serial_pipeline_trex([main_config, create_config])