File size: 1,837 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
from easydict import EasyDict
bipedalwalker_ppo_config = dict(
exp_name='bipedalwalker_ppo_seed0',
env=dict(
env_id='BipedalWalker-v3',
collector_env_num=8,
evaluator_env_num=5,
# (bool) Scale output action into legal range.
act_scale=True,
n_evaluator_episode=5,
stop_value=300,
rew_clip=True,
# The path to save the game replay
# replay_path='./bipedalwalker_ppo_seed0/video',
),
policy=dict(
cuda=False,
load_path="./bipedalwalker_ppo_seed0/ckpt/ckpt_best.pth.tar",
action_space='continuous',
model=dict(
action_space='continuous',
obs_shape=24,
action_shape=4,
),
learn=dict(
epoch_per_collect=10,
batch_size=64,
learning_rate=0.001,
value_weight=0.5,
entropy_weight=0.01,
clip_ratio=0.2,
adv_norm=True,
),
collect=dict(
n_sample=2048,
unroll_len=1,
discount_factor=0.99,
gae_lambda=0.95,
),
),
)
bipedalwalker_ppo_config = EasyDict(bipedalwalker_ppo_config)
main_config = bipedalwalker_ppo_config
bipedalwalker_ppo_create_config = dict(
env=dict(
type='bipedalwalker',
import_names=['dizoo.box2d.bipedalwalker.envs.bipedalwalker_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='ppo'),
)
bipedalwalker_ppo_create_config = EasyDict(bipedalwalker_ppo_create_config)
create_config = bipedalwalker_ppo_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial_onpolicy -c bipedalwalker_ppo_config.py -s 0`
from ding.entry import serial_pipeline_onpolicy
serial_pipeline_onpolicy([main_config, create_config], seed=0)
|