File size: 13,804 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import pytest
from itertools import product
import torch
from ding.model.template import DQN, RainbowDQN, QRDQN, IQN, FQF, DRQN, C51DQN, BDQ, GTrXLDQN
from ding.torch_utils import is_differentiable

T, B = 3, 4
obs_shape = [4, (8, ), (4, 64, 64)]
act_shape = [3, (6, ), [2, 3, 6]]
args = list(product(*[obs_shape, act_shape]))


@pytest.mark.unittest
class TestQLearning:

    def output_check(self, model, outputs):
        if isinstance(outputs, torch.Tensor):
            loss = outputs.sum()
        elif isinstance(outputs, list):
            loss = sum([t.sum() for t in outputs])
        elif isinstance(outputs, dict):
            loss = sum([v.sum() for v in outputs.values()])
        is_differentiable(loss, model)

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_dqn(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(B, obs_shape)
        else:
            inputs = torch.randn(B, *obs_shape)
        model = DQN(obs_shape, act_shape)
        outputs = model(inputs)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (B, act_shape)
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (B, *act_shape)
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (B, s)
        self.output_check(model, outputs['logit'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_bdq(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(B, obs_shape)
        else:
            inputs = torch.randn(B, *obs_shape)
        if not isinstance(act_shape, int) and len(act_shape) > 1:
            return
        num_branches = act_shape
        for action_bins_per_branch in range(1, 10):
            model = BDQ(obs_shape, num_branches, action_bins_per_branch)
            outputs = model(inputs)
            assert isinstance(outputs, dict)
            if isinstance(act_shape, int):
                assert outputs['logit'].shape == (B, act_shape, action_bins_per_branch)
            else:
                assert outputs['logit'].shape == (B, *act_shape, action_bins_per_branch)
            self.output_check(model, outputs['logit'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_rainbowdqn(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(B, obs_shape)
        else:
            inputs = torch.randn(B, *obs_shape)
        model = RainbowDQN(obs_shape, act_shape, n_atom=41)
        outputs = model(inputs)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (B, act_shape)
            assert outputs['distribution'].shape == (B, act_shape, 41)
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (B, *act_shape)
            assert outputs['distribution'].shape == (B, *act_shape, 41)
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (B, s)
                assert outputs['distribution'][i].shape == (B, s, 41)
        self.output_check(model, outputs['logit'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_c51(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(B, obs_shape)
        else:
            inputs = torch.randn(B, *obs_shape)
        model = C51DQN(obs_shape, act_shape, n_atom=41)
        outputs = model(inputs)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (B, act_shape)
            assert outputs['distribution'].shape == (B, act_shape, 41)
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (B, *act_shape)
            assert outputs['distribution'].shape == (B, *act_shape, 41)
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (B, s)
                assert outputs['distribution'][i].shape == (B, s, 41)
        self.output_check(model, outputs['logit'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_iqn(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(B, obs_shape)
        else:
            inputs = torch.randn(B, *obs_shape)
        num_quantiles = 48
        model = IQN(obs_shape, act_shape, num_quantiles=num_quantiles, quantile_embedding_size=64)
        outputs = model(inputs)
        print(model)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (B, act_shape)
            assert outputs['q'].shape == (num_quantiles, B, act_shape)
            assert outputs['quantiles'].shape == (B * num_quantiles, 1)
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (B, *act_shape)
            assert outputs['q'].shape == (num_quantiles, B, *act_shape)
            assert outputs['quantiles'].shape == (B * num_quantiles, 1)
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (B, s)
                assert outputs['q'][i].shape == (num_quantiles, B, s)
                assert outputs['quantiles'][i].shape == (B * num_quantiles, 1)
        self.output_check(model, outputs['logit'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_fqf(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(B, obs_shape)
        else:
            inputs = torch.randn(B, *obs_shape)
        num_quantiles = 48
        model = FQF(obs_shape, act_shape, num_quantiles=num_quantiles, quantile_embedding_size=64)
        outputs = model(inputs)
        print(model)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (B, act_shape)
            assert outputs['q'].shape == (B, num_quantiles, act_shape)
            assert outputs['quantiles'].shape == (B, num_quantiles + 1)
            assert outputs['quantiles_hats'].shape == (B, num_quantiles)
            assert outputs['q_tau_i'].shape == (B, num_quantiles - 1, act_shape)
            all_quantiles_proposal = model.head.quantiles_proposal
            all_fqf_fc = model.head.fqf_fc
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (B, *act_shape)
            assert outputs['q'].shape == (B, num_quantiles, *act_shape)
            assert outputs['quantiles'].shape == (B, num_quantiles + 1)
            assert outputs['quantiles_hats'].shape == (B, num_quantiles)
            assert outputs['q_tau_i'].shape == (B, num_quantiles - 1, *act_shape)
            all_quantiles_proposal = model.head.quantiles_proposal
            all_fqf_fc = model.head.fqf_fc
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (B, s)
                assert outputs['q'][i].shape == (B, num_quantiles, s)
                assert outputs['quantiles'][i].shape == (B, num_quantiles + 1)
                assert outputs['quantiles_hats'][i].shape == (B, num_quantiles)
                assert outputs['q_tau_i'][i].shape == (B, num_quantiles - 1, s)
            all_quantiles_proposal = [h.quantiles_proposal for h in model.head.pred]
            all_fqf_fc = [h.fqf_fc for h in model.head.pred]
        self.output_check(all_quantiles_proposal, outputs['quantiles'])
        for p in model.parameters():
            p.grad = None
        self.output_check(all_fqf_fc, outputs['q'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_qrdqn(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(B, obs_shape)
        else:
            inputs = torch.randn(B, *obs_shape)
        model = QRDQN(obs_shape, act_shape, num_quantiles=32)
        outputs = model(inputs)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (B, act_shape)
            assert outputs['q'].shape == (B, act_shape, 32)
            assert outputs['tau'].shape == (B, 32, 1)
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (B, *act_shape)
            assert outputs['q'].shape == (B, *act_shape, 32)
            assert outputs['tau'].shape == (B, 32, 1)
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (B, s)
                assert outputs['q'][i].shape == (B, s, 32)
                assert outputs['tau'][i].shape == (B, 32, 1)
        self.output_check(model, outputs['logit'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_drqn(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(T, B, obs_shape)
        else:
            inputs = torch.randn(T, B, *obs_shape)
        # (num_layer * num_direction, 1, head_hidden_size)
        prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)]
        model = DRQN(obs_shape, act_shape)
        outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=False)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (T, B, act_shape)
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (T, B, *act_shape)
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (T, B, s)
        assert len(outputs['next_state']) == B
        assert all([len(t) == 2 for t in outputs['next_state']])
        assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']])
        self.output_check(model, outputs['logit'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_drqn_inference(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(B, obs_shape)
        else:
            inputs = torch.randn(B, *obs_shape)
        # (num_layer * num_direction, 1, head_hidden_size)
        prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)]
        model = DRQN(obs_shape, act_shape)
        outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=True)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (B, act_shape)
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (B, *act_shape)
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (B, s)
        assert len(outputs['next_state']) == B
        assert all([len(t) == 2 for t in outputs['next_state']])
        assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']])
        self.output_check(model, outputs['logit'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_drqn_res_link(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(T, B, obs_shape)
        else:
            inputs = torch.randn(T, B, *obs_shape)
        # (num_layer * num_direction, 1, head_hidden_size)
        prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)]
        model = DRQN(obs_shape, act_shape, res_link=True)
        outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=False)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (T, B, act_shape)
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (T, B, *act_shape)
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (T, B, s)
        assert len(outputs['next_state']) == B
        assert all([len(t) == 2 for t in outputs['next_state']])
        assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']])
        self.output_check(model, outputs['logit'])

    @pytest.mark.parametrize('obs_shape, act_shape', args)
    def test_drqn_inference_res_link(self, obs_shape, act_shape):
        if isinstance(obs_shape, int):
            inputs = torch.randn(B, obs_shape)
        else:
            inputs = torch.randn(B, *obs_shape)
        # (num_layer * num_direction, 1, head_hidden_size)
        prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)]
        model = DRQN(obs_shape, act_shape, res_link=True)
        outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=True)
        assert isinstance(outputs, dict)
        if isinstance(act_shape, int):
            assert outputs['logit'].shape == (B, act_shape)
        elif len(act_shape) == 1:
            assert outputs['logit'].shape == (B, *act_shape)
        else:
            for i, s in enumerate(act_shape):
                assert outputs['logit'][i].shape == (B, s)
        assert len(outputs['next_state']) == B
        assert all([len(t) == 2 for t in outputs['next_state']])
        assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']])
        self.output_check(model, outputs['logit'])

    @pytest.mark.tmp
    def test_GTrXLDQN(self):
        obs_dim, seq_len, bs, action_dim = [4, 64, 64], 64, 32, 4
        obs = torch.rand(seq_len, bs, *obs_dim)
        model = GTrXLDQN(obs_dim, action_dim, encoder_hidden_size_list=[16, 16, 16])
        outputs = model(obs)
        assert isinstance(outputs, dict)