File size: 24,390 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import inspect
import logging
from typing import List, Tuple, Dict, Union

import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from easydict import EasyDict
from scipy.stats import entropy
from torch.nn import functional as F


def pad_and_get_lengths(inputs, num_of_sampled_actions):
    """
    Overview:
        Pad root_sampled_actions to make sure that the length of root_sampled_actions is equal to num_of_sampled_actions.
        Also record the true length of each sequence before padding.
    Arguments:
        - inputs (:obj:`List[dict]`): The input data.
        - num_of_sampled_actions (:obj:`int`): The number of sampled actions.
    Returns:
        - inputs (:obj:`List[dict]`): The input data after padding. Each dict also contains 'action_length' which indicates
                                      the true length of 'root_sampled_actions' before padding.
    Example:
        >>> inputs = [{'root_sampled_actions': torch.tensor([1, 2])}, {'root_sampled_actions': torch.tensor([3, 4, 5])}]
        >>> num_of_sampled_actions = 5
        >>> result = pad_and_get_lengths(inputs, num_of_sampled_actions)
        >>> print(result)  # Prints [{'root_sampled_actions': tensor([1, 2, 2, 2, 2]), 'action_length': 2},
                                       {'root_sampled_actions': tensor([3, 4, 5, 5, 5]), 'action_length': 3}]
    """
    for input_dict in inputs:
        root_sampled_actions = input_dict['root_sampled_actions']
        input_dict['action_length'] = len(root_sampled_actions)
        if len(root_sampled_actions) < num_of_sampled_actions:
            # Use the last element to pad root_sampled_actions
            padding = root_sampled_actions[-1].repeat(num_of_sampled_actions - len(root_sampled_actions))
            input_dict['root_sampled_actions'] = torch.cat((root_sampled_actions, padding))
    return inputs


def visualize_avg_softmax(logits):
    """
    Overview:
        Visualize the average softmax distribution across a minibatch.
    Arguments:
        logits (Tensor): The logits output from the model.
    """
    # Apply softmax to logits to get the probabilities.
    probabilities = F.softmax(logits, dim=1)

    # Compute the average probabilities across the minibatch.
    avg_probabilities = torch.mean(probabilities, dim=0)

    # Convert to numpy for visualization.
    avg_probabilities_np = avg_probabilities.detach().numpy()

    # Create a bar plot.
    plt.figure(figsize=(10, 8))
    plt.bar(np.arange(len(avg_probabilities_np)), avg_probabilities_np)

    plt.xlabel('Classes')
    plt.ylabel('Average Probability')
    plt.title('Average Softmax Probabilities Across the Minibatch')
    plt.savefig('avg_softmax_probabilities.png')
    plt.close()


def calculate_topk_accuracy(logits, true_one_hot, top_k):
    """
    Overview:
        Calculate the top-k accuracy.
    Arguments:
        logits (Tensor): The logits output from the model.
        true_one_hot (Tensor): The one-hot encoded true labels.
        top_k (int): The number of top predictions to consider for a match.
    Returns:
        match_percentage (float): The percentage of matches in top-k predictions.
    """
    # Apply softmax to logits to get the probabilities.
    probabilities = F.softmax(logits, dim=1)

    # Use topk to find the indices of the highest k probabilities.
    topk_indices = torch.topk(probabilities, top_k, dim=1)[1]

    # Get the true labels from the one-hot encoded tensor.
    true_labels = torch.argmax(true_one_hot, dim=1).unsqueeze(1)

    # Compare the predicted top-k labels with the true labels.
    matches = (topk_indices == true_labels).sum().item()

    # Calculate the percentage of matches.
    match_percentage = matches / logits.size(0) * 100

    return match_percentage


def plot_topk_accuracy(afterstate_policy_logits, true_chance_one_hot, top_k_values):
    """
    Overview:
        Plot the top_K accuracy based on the given afterstate_policy_logits and true_chance_one_hot tensors.
    Arguments:
        afterstate_policy_logits (torch.Tensor): Tensor of shape (batch_size, num_classes) representing the logits.
        true_chance_one_hot (torch.Tensor): Tensor of shape (batch_size, num_classes) representing the one-hot encoded true labels.
        top_k_values (range or list): Range or list of top_K values to calculate the accuracy for.
    Returns:
        None (plots the graph)
    """
    match_percentages = []
    for top_k in top_k_values:
        match_percentage = calculate_topk_accuracy(afterstate_policy_logits, true_chance_one_hot, top_k=top_k)
        match_percentages.append(match_percentage)

    plt.plot(top_k_values, match_percentages)
    plt.xlabel('top_K')
    plt.ylabel('Match Percentage')
    plt.title('Top_K Accuracy')
    plt.savefig('topk_accuracy.png')
    plt.close()


def compare_argmax(afterstate_policy_logits, chance_one_hot):
    """
    Overview:
        Compare the argmax of afterstate_policy_logits and chance_one_hot tensors.
    Arguments:
        afterstate_policy_logits (torch.Tensor): Tensor of shape (batch_size, num_classes) representing the logits.
        chance_one_hot (torch.Tensor): Tensor of shape (batch_size, num_classes) representing the one-hot encoded labels.
    Returns:
        None (plots the graph)
    Example usage:
        >>> afterstate_policy_logits = torch.randn(1024, 32)
        >>> chance_one_hot = torch.randn(1024, 32)
        >>> compare_argmax(afterstate_policy_logits, chance_one_hot)
    """

    # Calculate the argmax of afterstate_policy_logits and chance_one_hot tensors.
    argmax_afterstate = torch.argmax(afterstate_policy_logits, dim=1)
    argmax_chance = torch.argmax(chance_one_hot, dim=1)

    # Check if the argmax values are equal.
    matches = (argmax_afterstate == argmax_chance)

    # Create a list of sample indices.
    sample_indices = list(range(afterstate_policy_logits.size(0)))

    # Create a list to store the equality values (1 for equal, 0 for not equal).
    equality_values = [int(match) for match in matches]

    # Plot the equality values.
    plt.plot(sample_indices, equality_values)
    plt.xlabel('Sample Index')
    plt.ylabel('Equality')
    plt.title('Comparison of argmax')
    plt.savefig('compare_argmax.png')
    plt.close()


def plot_argmax_distribution(true_chance_one_hot):
    """
    Overview:
        Plot the distribution of possible values obtained from argmax(true_chance_one_hot).
    Arguments:
        true_chance_one_hot (torch.Tensor): Tensor of shape (batch_size, num_classes) representing the one-hot encoded true labels.
    Returns:
        None (plots the graph)
    """

    # Calculate the argmax of true_chance_one_hot tensor.
    argmax_values = torch.argmax(true_chance_one_hot, dim=1)

    # Calculate the count of each unique argmax value.
    unique_values, counts = torch.unique(argmax_values, return_counts=True)

    # Convert the tensor to a list for plotting.
    unique_values = unique_values.tolist()
    counts = counts.tolist()

    # Plot the distribution of argmax values.
    plt.bar(unique_values, counts)
    plt.xlabel('Argmax Values')
    plt.ylabel('Count')
    plt.title('Distribution of Argmax Values')
    plt.savefig('argmax_distribution.png')
    plt.close()


class LayerNorm(nn.Module):
    """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """

    def __init__(self, ndim, bias):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, input):
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)


def configure_optimizers(
        model: nn.Module,
        weight_decay: float = 0,
        learning_rate: float = 3e-3,
        betas: tuple = (0.9, 0.999),
        device_type: str = "cuda"
):
    """
    Overview:
        This function is adapted from https://github.com/karpathy/nanoGPT/blob/master/model.py

        This long function is unfortunately doing something very simple and is being very defensive:
        We are separating out all parameters of the model into two buckets: those that will experience
        weight decay for regularization and those that won't (biases, layernorm, embedding weights, and batchnorm).
        We are then returning the PyTorch optimizer object.
    Arguments:
        - model (:obj:`nn.Module`): The model to be optimized.
        - weight_decay (:obj:`float`): The weight decay factor.
        - learning_rate (:obj:`float`): The learning rate.
        - betas (:obj:`tuple`): The betas for Adam.
        - device_type (:obj:`str`): The device type.
    Returns:
        - optimizer (:obj:`torch.optim`): The optimizer.
    """
    # separate out all parameters to those that will and won't experience regularizing weight decay
    decay = set()
    no_decay = set()
    whitelist_weight_modules = (torch.nn.Linear, torch.nn.LSTM, nn.Conv2d)
    blacklist_weight_modules = (
        torch.nn.LayerNorm, LayerNorm, torch.nn.Embedding, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d
    )
    for mn, m in model.named_modules():
        for pn, p in m.named_parameters():
            fpn = '%s.%s' % (mn, pn) if mn else pn  # full param name
            # random note: because named_modules and named_parameters are recursive
            # we will see the same tensors p many many times. but doing it this way
            # allows us to know which parent module any tensor p belongs to...
            if pn.endswith('bias') or pn.endswith('lstm.bias_ih_l0') or pn.endswith('lstm.bias_hh_l0'):
                # all biases will not be decayed
                no_decay.add(fpn)
            elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
                # weights of whitelist modules will be weight decayed
                decay.add(fpn)
            elif (pn.endswith('weight_ih_l0') or pn.endswith('weight_hh_l0')) and isinstance(m,
                                                                                             whitelist_weight_modules):
                # some special weights of whitelist modules will be weight decayed
                decay.add(fpn)
            elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
                # weights of blacklist modules will NOT be weight decayed
                no_decay.add(fpn)
    try:
        # subtle: 'transformer.wte.weight' and 'lm_head.weight' are tied, so they
        # will appear in the no_decay and decay sets respectively after the above.
        # In addition, because named_parameters() doesn't return duplicates, it
        # will only return the first occurence, key'd by 'transformer.wte.weight', below.
        # so let's manually remove 'lm_head.weight' from decay set. This will include
        # this tensor into optimization via transformer.wte.weight only, and not decayed.
        decay.remove('lm_head.weight')
    except KeyError:
        logging.info("lm_head.weight not found in decay set, so not removing it")

    # validate that we considered every parameter
    param_dict = {pn: p for pn, p in model.named_parameters()}
    inter_params = decay & no_decay
    union_params = decay | no_decay
    assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params),)
    assert len(
        param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
                                                % (str(param_dict.keys() - union_params),)

    # create the pytorch optimizer object
    optim_groups = [
        {
            "params": [param_dict[pn] for pn in sorted(list(decay))],
            "weight_decay": weight_decay
        },
        {
            "params": [param_dict[pn] for pn in sorted(list(no_decay))],
            "weight_decay": 0.0
        },
    ]
    # new PyTorch nightly has a new 'fused' option for AdamW that is much faster
    use_fused = (device_type == 'cuda') and ('fused' in inspect.signature(torch.optim.AdamW).parameters)
    print(f"using fused AdamW: {use_fused}")
    extra_args = dict(fused=True) if use_fused else dict()
    optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)

    return optimizer


def prepare_obs(obs_batch_ori: np.ndarray, cfg: EasyDict) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Overview:
        Prepare the observations for the model, including:
        1. convert the obs to torch tensor
        2. stack the obs
        3. calculate the consistency loss
    Arguments:
        - obs_batch_ori (:obj:`np.ndarray`): the original observations in a batch style
        - cfg (:obj:`EasyDict`): the config dict
    Returns:
        - obs_batch (:obj:`torch.Tensor`): the stacked observations
        - obs_target_batch (:obj:`torch.Tensor`): the stacked observations for calculating consistency loss
    """
    obs_target_batch = None
    if cfg.model.model_type == 'conv':
        # for 3-dimensional image obs
        """
        ``obs_batch_ori`` is the original observations in a batch style, shape is:
        (batch_size, stack_num+num_unroll_steps, W, H, C) -> (batch_size, (stack_num+num_unroll_steps)*C, W, H )

        e.g. in pong: stack_num=4, num_unroll_steps=5
        (4, 9, 96, 96, 3) -> (4, 9*3, 96, 96) = (4, 27, 96, 96)

        the second dim of ``obs_batch_ori``:
        timestep t:     1,   2,   3,  4,    5,   6,   7,   8,     9
        channel_num:    3    3    3   3     3    3    3    3      3
                       ---, ---, ---, ---,  ---, ---, ---, ---,   ---
        """
        obs_batch_ori = torch.from_numpy(obs_batch_ori).to(cfg.device).float()
        # ``obs_batch`` is used in ``initial_inference()``, which is the first stacked obs at timestep t in
        # ``obs_batch_ori``. shape is (4, 4*3, 96, 96) = (4, 12, 96, 96)
        obs_batch = obs_batch_ori[:, 0:cfg.model.frame_stack_num * cfg.model.image_channel, :, :]

        if cfg.model.self_supervised_learning_loss:
            # ``obs_target_batch`` is only used for calculate consistency loss, which take the all obs other than
            # timestep t1, and is only performed in the last 8 timesteps in the second dim in ``obs_batch_ori``.
            obs_target_batch = obs_batch_ori[:, cfg.model.image_channel:, :, :]
    elif cfg.model.model_type == 'mlp':
        # for 1-dimensional vector obs
        """
        ``obs_batch_ori`` is the original observations in a batch style, shape is:
        (batch_size, stack_num+num_unroll_steps, obs_shape) -> (batch_size, (stack_num+num_unroll_steps)*obs_shape)

        e.g. in cartpole: stack_num=1, num_unroll_steps=5, obs_shape=4
        (4, 6, 4) -> (4, 6*4) = (4, 24)

        the second dim of ``obs_batch_ori``:
        timestep t:     1,   2,      3,     4,    5,   6,
        obs_shape:      4    4       4      4     4    4
                       ----, ----,  ----, ----,  ----,  ----,
        """
        obs_batch_ori = torch.from_numpy(obs_batch_ori).to(cfg.device).float()
        # ``obs_batch`` is used in ``initial_inference()``, which is the first stacked obs at timestep t1 in
        # ``obs_batch_ori``. shape is (4, 4*3) = (4, 12)
        obs_batch = obs_batch_ori[:, 0:cfg.model.frame_stack_num * cfg.model.observation_shape]

        if cfg.model.self_supervised_learning_loss:
            # ``obs_target_batch`` is only used for calculate consistency loss, which take the all obs other than
            # timestep t1, and is only performed in the last 8 timesteps in the second dim in ``obs_batch_ori``.
            obs_target_batch = obs_batch_ori[:, cfg.model.observation_shape:]

    return obs_batch, obs_target_batch


def negative_cosine_similarity(x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
    """
    Overview:
        consistency loss function: the negative cosine similarity.
    Arguments:
        - x1 (:obj:`torch.Tensor`): shape (batch_size, dim), e.g. (256, 512)
        - x2 (:obj:`torch.Tensor`): shape (batch_size, dim), e.g. (256, 512)
    Returns:
        (x1 * x2).sum(dim=1) is the cosine similarity between vector x1 and x2.
        The cosine similarity always belongs to the interval [-1, 1].
        For example, two proportional vectors have a cosine similarity of 1,
        two orthogonal vectors have a similarity of 0,
        and two opposite vectors have a similarity of -1.
         -(x1 * x2).sum(dim=1) is consistency loss, i.e. the negative cosine similarity.
    Reference:
        https://en.wikipedia.org/wiki/Cosine_similarity
    """
    x1 = F.normalize(x1, p=2., dim=-1, eps=1e-5)
    x2 = F.normalize(x2, p=2., dim=-1, eps=1e-5)
    return -(x1 * x2).sum(dim=1)


def compute_entropy(policy_probs: torch.Tensor) -> torch.Tensor:
    dist = torch.distributions.Categorical(probs=policy_probs)
    entropy = dist.entropy().mean()
    return entropy


def get_max_entropy(action_shape: int) -> np.float32:
    """
    Overview:
        get the max entropy of the action space.
    Arguments:
        - action_shape (:obj:`int`): the shape of the action space
    Returns:
        - max_entropy (:obj:`float`): the max entropy of the action space
    """
    p = 1.0 / action_shape
    return -action_shape * p * np.log2(p)


def select_action(visit_counts: np.ndarray,
                  temperature: float = 1,
                  deterministic: bool = True) -> Tuple[np.int64, np.ndarray]:
    """
    Overview:
        Select action from visit counts of the root node.
    Arguments:
        - visit_counts (:obj:`np.ndarray`): The visit counts of the root node.
        - temperature (:obj:`float`): The temperature used to adjust the sampling distribution.
        - deterministic (:obj:`bool`):  Whether to enable deterministic mode in action selection. True means to \
            select the argmax result, False indicates to sample action from the distribution.
    Returns:
        - action_pos (:obj:`np.int64`): The selected action position (index).
        - visit_count_distribution_entropy (:obj:`np.ndarray`): The entropy of the visit count distribution.
    """
    action_probs = [visit_count_i ** (1 / temperature) for visit_count_i in visit_counts]
    action_probs = [x / sum(action_probs) for x in action_probs]

    if deterministic:
        action_pos = np.argmax([v for v in visit_counts])
    else:
        action_pos = np.random.choice(len(visit_counts), p=action_probs)

    visit_count_distribution_entropy = entropy(action_probs, base=2)
    return action_pos, visit_count_distribution_entropy


def concat_output_value(output_lst: List) -> np.ndarray:
    """
    Overview:
        concat the values of the model output list.
    Arguments:
        - output_lst (:obj:`List`): the model output list
    Returns:
        - value_lst (:obj:`np.array`): the values of the model output list
    """
    # concat the values of the model output list
    value_lst = []
    for output in output_lst:
        value_lst.append(output.value)

    value_lst = np.concatenate(value_lst)

    return value_lst


def concat_output(output_lst: List, data_type: str = 'muzero') -> Tuple:
    """
    Overview:
        concat the model output.
    Arguments:
        - output_lst (:obj:`List`): The model output list.
        - data_type (:obj:`str`): The data type, should be 'muzero' or 'efficientzero'.
    Returns:
        - value_lst (:obj:`np.array`): the values of the model output list
    """
    assert data_type in ['muzero', 'efficientzero'], "data_type should be 'muzero' or 'efficientzero'"
    # concat the model output
    value_lst, reward_lst, policy_logits_lst, latent_state_lst = [], [], [], []
    reward_hidden_state_c_lst, reward_hidden_state_h_lst = [], []
    for output in output_lst:
        value_lst.append(output.value)
        if data_type == 'muzero':
            reward_lst.append(output.reward)
        elif data_type == 'efficientzero':
            reward_lst.append(output.value_prefix)

        policy_logits_lst.append(output.policy_logits)
        latent_state_lst.append(output.latent_state)
        if data_type == 'efficientzero':
            reward_hidden_state_c_lst.append(output.reward_hidden_state[0].squeeze(0))
            reward_hidden_state_h_lst.append(output.reward_hidden_state[1].squeeze(0))

    value_lst = np.concatenate(value_lst)
    reward_lst = np.concatenate(reward_lst)
    policy_logits_lst = np.concatenate(policy_logits_lst)
    latent_state_lst = np.concatenate(latent_state_lst)
    if data_type == 'muzero':
        return value_lst, reward_lst, policy_logits_lst, latent_state_lst
    elif data_type == 'efficientzero':
        reward_hidden_state_c_lst = np.expand_dims(np.concatenate(reward_hidden_state_c_lst), axis=0)
        reward_hidden_state_h_lst = np.expand_dims(np.concatenate(reward_hidden_state_h_lst), axis=0)
        return value_lst, reward_lst, policy_logits_lst, latent_state_lst, (
            reward_hidden_state_c_lst, reward_hidden_state_h_lst
        )


def to_torch_float_tensor(data_list: Union[np.ndarray, List[np.ndarray]], device: torch.device) -> Union[
    torch.Tensor, List[torch.Tensor]]:
    """
    Overview:
        convert the data or data list to torch float tensor
    Arguments:
        - data_list (:obj:`Union[np.ndarray, List[np.ndarray]]`): The data or data list.
        - device (:obj:`torch.device`): The device.
    Returns:
        - output_data_list (:obj:`Union[torch.Tensor, List[torch.Tensor]]`): The output data or data list.
    """
    if isinstance(data_list, np.ndarray):
        return (torch.from_numpy(data_list).to(device).float())
    elif isinstance(data_list, list) and all(isinstance(data, np.ndarray) for data in data_list):
        output_data_list = []
        for data in data_list:
            output_data_list.append(torch.from_numpy(data).to(device).float())
        return output_data_list
    else:
        raise TypeError("The type of input must be np.ndarray or List[np.ndarray]")


def to_detach_cpu_numpy(data_list: Union[torch.Tensor, List[torch.Tensor]]) -> Union[np.ndarray, List[np.ndarray]]:
    """
    Overview:
        convert the data or data list to detach cpu numpy.
    Arguments:
        - data_list (:obj:`Union[torch.Tensor, List[torch.Tensor]]`): the data or data list
    Returns:
        - output_data_list (:obj:`Union[np.ndarray,List[np.ndarray]]`): the output data or data list
    """
    if isinstance(data_list, torch.Tensor):
        return data_list.detach().cpu().numpy()
    elif isinstance(data_list, list) and all(isinstance(data, torch.Tensor) for data in data_list):
        output_data_list = []
        for data in data_list:
            output_data_list.append(data.detach().cpu().numpy())
        return output_data_list
    else:
        raise TypeError("The type of input must be torch.Tensor or List[torch.Tensor]")


def ez_network_output_unpack(network_output: Dict) -> Tuple:
    """
    Overview:
        unpack the network output of efficientzero
    Arguments:
        - network_output (:obj:`Tuple`): the network output of efficientzero
    """
    latent_state = network_output.latent_state  # shape:(batch_size, lstm_hidden_size, num_unroll_steps+1, num_unroll_steps+1)
    value_prefix = network_output.value_prefix  # shape: (batch_size, support_support_size)
    reward_hidden_state = network_output.reward_hidden_state  # shape: {tuple: 2} -> (1, batch_size, 512)
    value = network_output.value  # shape: (batch_size, support_support_size)
    policy_logits = network_output.policy_logits  # shape: (batch_size, action_space_size)
    return latent_state, value_prefix, reward_hidden_state, value, policy_logits


def mz_network_output_unpack(network_output: Dict) -> Tuple:
    """
    Overview:
        unpack the network output of muzero
    Arguments:
        - network_output (:obj:`Tuple`): the network output of muzero
    """
    latent_state = network_output.latent_state  # shape:(batch_size, lstm_hidden_size, num_unroll_steps+1, num_unroll_steps+1)
    reward = network_output.reward  # shape: (batch_size, support_support_size)
    value = network_output.value  # shape: (batch_size, support_support_size)
    policy_logits = network_output.policy_logits  # shape: (batch_size, action_space_size)
    return latent_state, reward, value, policy_logits