File size: 28,564 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
import copy
from collections import namedtuple
from typing import List, Dict, Tuple
import numpy as np
import torch.distributions
import torch.nn.functional as F
import torch.optim as optim
from ding.policy.base_policy import Policy
from ding.torch_utils import to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate
from easydict import EasyDict
from lzero.policy import configure_optimizers
from lzero.policy.utils import pad_and_get_lengths, compute_entropy
@POLICY_REGISTRY.register('sampled_alphazero')
class SampledAlphaZeroPolicy(Policy):
"""
Overview:
The policy class for Sampled AlphaZero.
"""
# The default_config for AlphaZero policy.
config = dict(
# (str) The type of policy, as the key of the policy registry.
type='alphazero',
# (bool) Whether to enable the sampled-based algorithm (e.g. Sampled AlphaZero)
# this variable is used in ``collector``.
sampled_algo=False,
normalize_prob_of_sampled_actions=False,
policy_loss_type='cross_entropy', # options={'cross_entropy', 'KL'}
# (bool) Whether to use torch.compile method to speed up our model, which required torch>=2.0.
torch_compile=False,
# (bool) Whether to use TF32 for our model.
tensor_float_32=False,
model=dict(
# (tuple) The stacked obs shape.
observation_shape=(3, 6, 6),
# (int) The number of res blocks in AlphaZero model.
num_res_blocks=1,
# (int) The number of channels of hidden states in AlphaZero model.
num_channels=32,
),
# (bool) Whether to use C++ MCTS in policy. If False, use Python implementation.
mcts_ctree=True,
# (bool) Whether to use cuda for network.
cuda=False,
# (int) How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
# For different env, we have different episode_length,
# we usually set update_per_collect = collector_env_num * episode_length / batch_size * reuse_factor.
# If we set update_per_collect=None, we will set update_per_collect = collected_transitions_num * cfg.policy.model_update_ratio automatically.
update_per_collect=None,
# (float) The ratio of the collected data used for training. Only effective when ``update_per_collect`` is not None.
model_update_ratio=0.1,
# (int) Minibatch size for one gradient descent.
batch_size=256,
# (str) Optimizer for training policy network. ['SGD', 'Adam', 'AdamW']
optim_type='SGD',
# (float) Learning rate for training policy network. Initial lr for manually decay schedule.
learning_rate=0.2,
# (float) Weight decay for training policy network.
weight_decay=1e-4,
# (float) One-order Momentum in optimizer, which stabilizes the training process (gradient direction).
momentum=0.9,
# (float) The maximum constraint value of gradient norm clipping.
grad_clip_value=10,
# (float) The weight of value loss.
value_weight=1.0,
# (int) The number of environments used in collecting data.
collector_env_num=8,
# (int) The number of environments used in evaluating policy.
evaluator_env_num=3,
# (bool) Whether to use piecewise constant learning rate decay.
# i.e. lr: 0.2 -> 0.02 -> 0.002
lr_piecewise_constant_decay=True,
# (int) The number of final training iterations to control lr decay, which is only used for manually decay.
threshold_training_steps_for_final_lr=int(5e5),
# (bool) Whether to use manually temperature decay.
# i.e. temperature: 1 -> 0.5 -> 0.25
manual_temperature_decay=False,
# (int) The number of final training iterations to control temperature, which is only used for manually decay.
threshold_training_steps_for_final_temperature=int(1e5),
# (float) The fixed temperature value for MCTS action selection, which is used to control the exploration.
# The larger the value, the more exploration. This value is only used when manual_temperature_decay=False.
fixed_temperature_value=0.25,
mcts=dict(
# (int) The number of simulations to perform at each move.
num_simulations=50,
# (int) The maximum number of moves to make in a game.
max_moves=512, # for chess and shogi, 722 for Go.
# (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree.
root_dirichlet_alpha=0.3,
# (float) The noise weight at the root node of the search tree.
root_noise_weight=0.25,
# (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search.
pb_c_base=19652,
# (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search.
pb_c_init=1.25,
#
legal_actions=None,
# (int) The action space size.
action_space_size=9,
# (int) The number of sampled actions for each state.
num_of_sampled_actions=2,
#
continuous_action_space=False,
),
other=dict(replay_buffer=dict(
replay_buffer_size=int(1e6),
save_episode=False,
)),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default model setting for demonstration.
Returns:
- model_type (:obj:`str`): The model type used in this algorithm, which is registered in ModelRegistry.
- import_names (:obj:`List[str]`): The model class path list used in this algorithm.
"""
return 'AlphaZeroModel', ['lzero.model.alphazero_model']
def _init_learn(self) -> None:
assert self._cfg.optim_type in ['SGD', 'Adam', 'AdamW'], self._cfg.optim_type
if self._cfg.optim_type == 'SGD':
self._optimizer = optim.SGD(
self._model.parameters(),
lr=self._cfg.learning_rate,
momentum=self._cfg.momentum,
weight_decay=self._cfg.weight_decay,
)
elif self._cfg.optim_type == 'Adam':
self._optimizer = optim.Adam(
self._model.parameters(), lr=self._cfg.learning_rate, weight_decay=self._cfg.weight_decay
)
elif self._cfg.optim_type == 'AdamW':
self._optimizer = configure_optimizers(
model=self._model,
weight_decay=self._cfg.weight_decay,
learning_rate=self._cfg.learning_rate,
device_type=self._cfg.device
)
if self._cfg.lr_piecewise_constant_decay:
from torch.optim.lr_scheduler import LambdaLR
max_step = self._cfg.threshold_training_steps_for_final_lr
# NOTE: the 1, 0.1, 0.01 is the decay rate, not the lr.
# lr_lambda = lambda step: 1 if step < max_step * 0.5 else (0.1 if step < max_step else 0.01) # noqa
lr_lambda = lambda step: 1 if step < max_step * 0.33 else (0.1 if step < max_step * 0.66 else 0.01) # noqa
self.lr_scheduler = LambdaLR(self._optimizer, lr_lambda=lr_lambda)
# Algorithm config
self._value_weight = self._cfg.value_weight
self._entropy_weight = self._cfg.entropy_weight
# Main and target models
self._learn_model = self._model
# TODO(pu): test the effect of torch 2.0
if self._cfg.torch_compile:
self._learn_model = torch.compile(self._learn_model)
def _forward_learn(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, float]:
for input_dict in inputs:
# Check and remove 'katago_game_state' from 'obs' if it exists
if 'katago_game_state' in input_dict['obs']:
del input_dict['obs']['katago_game_state']
# Check and remove 'katago_game_state' from 'next_obs' if it exists
if 'katago_game_state' in input_dict['next_obs']:
del input_dict['next_obs']['katago_game_state']
# list of dict -> dict of list
# only for env with variable legal actions
inputs = pad_and_get_lengths(inputs, self._cfg.mcts.num_of_sampled_actions)
inputs = default_collate(inputs)
valid_action_length = inputs['action_length']
if self._cuda:
inputs = to_device(inputs, self._device)
self._learn_model.train()
state_batch = inputs['obs']['observation']
mcts_visit_count_probs = inputs['probs']
reward = inputs['reward']
root_sampled_actions = inputs['root_sampled_actions']
if len(root_sampled_actions.shape) == 1:
print(f"root_sampled_actions.shape: {root_sampled_actions.shape}")
state_batch = state_batch.to(device=self._device, dtype=torch.float)
mcts_visit_count_probs = mcts_visit_count_probs.to(device=self._device, dtype=torch.float)
reward = reward.to(device=self._device, dtype=torch.float)
policy_probs, values = self._learn_model.compute_policy_value(state_batch)
policy_log_probs = torch.log(policy_probs)
# calculate policy entropy, for monitoring only
entropy = compute_entropy(policy_probs)
entropy_loss = -entropy
# ==============================================================
# policy loss
# ==============================================================
policy_loss = self._calculate_policy_loss_disc(policy_probs, mcts_visit_count_probs, root_sampled_actions,
valid_action_length)
# ==============================================================
# value loss
# ==============================================================
value_loss = F.mse_loss(values.view(-1), reward)
total_loss = self._value_weight * value_loss + policy_loss + self._entropy_weight * entropy_loss
self._optimizer.zero_grad()
total_loss.backward()
total_grad_norm_before_clip = torch.nn.utils.clip_grad_norm_(
list(self._model.parameters()),
max_norm=self._cfg.grad_clip_value,
)
self._optimizer.step()
if self._cfg.lr_piecewise_constant_decay is True:
self.lr_scheduler.step()
# =============
# after update
# =============
return {
'cur_lr': self._optimizer.param_groups[0]['lr'],
'total_loss': total_loss.item(),
'policy_loss': policy_loss.item(),
'value_loss': value_loss.item(),
'entropy_loss': entropy_loss.item(),
'total_grad_norm_before_clip': total_grad_norm_before_clip.item(),
'collect_mcts_temperature': self.collect_mcts_temperature,
}
def _calculate_policy_loss_disc(
self, policy_probs: torch.Tensor, target_policy: torch.Tensor,
target_sampled_actions: torch.Tensor, valid_action_lengths: torch.Tensor
) -> torch.Tensor:
# For each batch and each sampled action, get the corresponding probability
# from policy_probs and target_policy, and put it into sampled_policy_probs and
# sampled_target_policy at the same position.
sampled_policy_probs = policy_probs.gather(1, target_sampled_actions)
sampled_target_policy = target_policy.gather(1, target_sampled_actions)
# Create a mask for valid actions
max_length = target_sampled_actions.size(1)
mask = torch.arange(max_length).expand(len(valid_action_lengths), max_length) < valid_action_lengths.unsqueeze(
1)
mask = mask.to(device=self._device)
# Apply the mask to sampled_policy_probs and sampled_target_policy
sampled_policy_probs = sampled_policy_probs * mask.float()
sampled_target_policy = sampled_target_policy * mask.float()
# Normalize sampled_policy_probs and sampled_target_policy
sampled_policy_probs = sampled_policy_probs / (sampled_policy_probs.sum(dim=1, keepdim=True) + 1e-6)
sampled_target_policy = sampled_target_policy / (sampled_target_policy.sum(dim=1, keepdim=True) + 1e-6)
# after normalization, the sum of each row should be 1, but the prob corresponding to valid action becomes a small non-zero value
# Use torch.where to prevent gradients for invalid actions
sampled_policy_probs = torch.where(mask, sampled_policy_probs, torch.zeros_like(sampled_policy_probs))
sampled_target_policy = torch.where(mask, sampled_target_policy, torch.zeros_like(sampled_target_policy))
if self._cfg.policy_loss_type == 'KL':
# Calculate the KL divergence between sampled_policy_probs and sampled_target_policy
# The KL divergence between 2 probability distributions P and Q is defined as:
# KL(P || Q) = sum(P(i) * log(P(i) / Q(i)))
# We use the PyTorch function kl_div to calculate it.
loss = torch.nn.functional.kl_div(
sampled_policy_probs.log(), sampled_target_policy, reduction='none'
)
loss = torch.nan_to_num(loss)
# Apply the mask to the loss
loss = loss * mask.float()
# Calculate the mean loss over the batch
loss = loss.sum() / mask.sum()
elif self._cfg.policy_loss_type == 'cross_entropy':
# Calculate the cross entropy loss between sampled_policy_probs and sampled_target_policy
# The cross entropy between 2 probability distributions P and Q is defined as:
# H(P, Q) = -sum(P(i) * log(Q(i)))
# We use the PyTorch function cross_entropy to calculate it.
loss = torch.nn.functional.cross_entropy(
sampled_policy_probs, torch.argmax(sampled_target_policy, dim=1), reduction='none'
)
# 使用 nan_to_num 将 loss 中的 nan 值设置为0
loss = torch.nan_to_num(loss)
# Apply the mask to the loss
loss = loss * mask.float()
# Calculate the mean loss over the batch
loss = loss.sum() / mask.sum()
else:
raise ValueError(f"Invalid policy_loss_type: {self._cfg.policy_loss_type}")
return loss
def _init_collect(self) -> None:
"""
Overview:
Collect mode init method. Called by ``self.__init__``. Initialize the collect model and MCTS utils.
"""
self._get_simulation_env()
self._collect_model = self._model
if self._cfg.mcts_ctree:
import sys
sys.path.append('./LightZero/lzero/mcts/ctree/ctree_alphazero/build')
import mcts_alphazero
self._collect_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves, self._cfg.mcts.num_simulations,
self._cfg.mcts.pb_c_base,
self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha,
self._cfg.mcts.root_noise_weight, self.simulate_env)
else:
if self._cfg.sampled_algo:
from lzero.mcts.ptree.ptree_az_sampled import MCTS
else:
from lzero.mcts.ptree.ptree_az import MCTS
self._collect_mcts = MCTS(self._cfg.mcts, self.simulate_env)
self.collect_mcts_temperature = 1
@torch.no_grad()
def _forward_collect(self, obs: Dict, temperature: float = 1) -> Dict[str, torch.Tensor]:
"""
Overview:
The forward function for collecting data in collect mode. Use real env to execute MCTS search.
Arguments:
- obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \
corresponding obs in this timestep.
- temperature (:obj:`float`): The temperature for MCTS search.
Returns:
- output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \
the corresponding policy output in this timestep, including action, probs and so on.
"""
self.collect_mcts_temperature = temperature
ready_env_id = list(obs.keys())
init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id}
try:
katago_game_state = {env_id: obs[env_id]['katago_game_state'] for env_id in ready_env_id}
except Exception as e:
katago_game_state = {env_id: None for env_id in ready_env_id}
start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id}
output = {}
self._policy_model = self._collect_model
for env_id in ready_env_id:
# print('[collect] start_player_index={}'.format(start_player_index[env_id]))
# print('[collect] init_state=\n{}'.format(init_state[env_id]))
state_config_for_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id],
init_state=init_state[env_id],
katago_policy_init=True,
katago_game_state=katago_game_state[env_id]))
action, mcts_visit_count_probs = self._collect_mcts.get_next_action(
state_config_for_env_reset,
self._policy_value_func,
self.collect_mcts_temperature,
True,
)
# if np.array_equal(self._collect_mcts.get_sampled_actions(), np.array([2, 2, 3])):
# print('debug')
output[env_id] = {
'action': action,
'probs': mcts_visit_count_probs,
'root_sampled_actions': self._collect_mcts.get_sampled_actions(),
}
return output
def _init_eval(self) -> None:
"""
Overview:
Evaluate mode init method. Called by ``self.__init__``. Initialize the eval model and MCTS utils.
"""
self._get_simulation_env()
if self._cfg.mcts_ctree:
import sys
sys.path.append('./LightZero/lzero/mcts/ctree/ctree_alphazero/build')
import mcts_alphazero
# TODO(pu): how to set proper num_simulations for evaluation
self._eval_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves,
min(800, self._cfg.mcts.num_simulations * 4),
self._cfg.mcts.pb_c_base,
self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha,
self._cfg.mcts.root_noise_weight, self.simulate_env)
else:
if self._cfg.sampled_algo:
from lzero.mcts.ptree.ptree_az_sampled import MCTS
else:
from lzero.mcts.ptree.ptree_az import MCTS
mcts_eval_config = copy.deepcopy(self._cfg.mcts)
# TODO(pu): how to set proper num_simulations for evaluation
mcts_eval_config.num_simulations = min(800, mcts_eval_config.num_simulations * 4)
self._eval_mcts = MCTS(mcts_eval_config, self.simulate_env)
self._eval_model = self._model
def _forward_eval(self, obs: Dict) -> Dict[str, torch.Tensor]:
"""
Overview:
The forward function for evaluating the current policy in eval mode, similar to ``self._forward_collect``.
Arguments:
- obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \
corresponding obs in this timestep.
Returns:
- output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \
the corresponding policy output in this timestep, including action, probs and so on.
"""
ready_env_id = list(obs.keys())
init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id}
try:
katago_game_state = {env_id: obs[env_id]['katago_game_state'] for env_id in ready_env_id}
except Exception as e:
katago_game_state = {env_id: None for env_id in ready_env_id}
start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id}
output = {}
self._policy_model = self._eval_model
for env_id in ready_env_id:
# print('[eval] start_player_index={}'.format(start_player_index[env_id]))
# print('[eval] init_state=\n {}'.format(init_state[env_id]))
state_config_for_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id],
init_state=init_state[env_id],
katago_policy_init=False,
katago_game_state=katago_game_state[env_id]))
# try:
action, mcts_visit_count_probs = self._eval_mcts.get_next_action(state_config_for_env_reset,
self._policy_value_func,
1.0, False)
# except Exception as e:
# print(f"Exception occurred: {e}")
# print(f"Is self._policy_value_func callable? {callable(self._policy_value_func)}")
# raise # re-raise the exception
# print("="*20)
# print(action, mcts_visit_count_probs)
# print("="*20)
output[env_id] = {
'action': action,
'probs': mcts_visit_count_probs,
}
return output
def _get_simulation_env(self):
assert self._cfg.simulation_env_name in ['tictactoe', 'gomoku', 'go'], self._cfg.simulation_env_name
assert self._cfg.simulation_env_config_type in ['play_with_bot', 'self_play', 'league',
'sampled_play_with_bot'], self._cfg.simulation_env_config_type
if self._cfg.simulation_env_name == 'tictactoe':
from zoo.board_games.tictactoe.envs.tictactoe_env import TicTacToeEnv
if self._cfg.simulation_env_config_type == 'play_with_bot':
from zoo.board_games.tictactoe.config.tictactoe_alphazero_bot_mode_config import \
tictactoe_alphazero_config
elif self._cfg.simulation_env_config_type == 'self_play':
from zoo.board_games.tictactoe.config.tictactoe_alphazero_sp_mode_config import \
tictactoe_alphazero_config
elif self._cfg.simulation_env_config_type == 'league':
from zoo.board_games.tictactoe.config.tictactoe_alphazero_league_config import \
tictactoe_alphazero_config
elif self._cfg.simulation_env_config_type == 'sampled_play_with_bot':
from zoo.board_games.tictactoe.config.tictactoe_sampled_alphazero_bot_mode_config import \
tictactoe_sampled_alphazero_config as tictactoe_alphazero_config
self.simulate_env = TicTacToeEnv(tictactoe_alphazero_config.env)
elif self._cfg.simulation_env_name == 'gomoku':
from zoo.board_games.gomoku.envs.gomoku_env import GomokuEnv
if self._cfg.simulation_env_config_type == 'play_with_bot':
from zoo.board_games.gomoku.config.gomoku_alphazero_bot_mode_config import gomoku_alphazero_config
elif self._cfg.simulation_env_config_type == 'self_play':
from zoo.board_games.gomoku.config.gomoku_alphazero_sp_mode_config import gomoku_alphazero_config
elif self._cfg.simulation_env_config_type == 'league':
from zoo.board_games.gomoku.config.gomoku_alphazero_league_config import gomoku_alphazero_config
elif self._cfg.simulation_env_config_type == 'sampled_play_with_bot':
from zoo.board_games.gomoku.config.gomoku_sampled_alphazero_bot_mode_config import \
gomoku_sampled_alphazero_config as gomoku_alphazero_config
self.simulate_env = GomokuEnv(gomoku_alphazero_config.env)
elif self._cfg.simulation_env_name == 'go':
from zoo.board_games.go.envs.go_env import GoEnv
if self._cfg.simulation_env_config_type == 'play_with_bot':
from zoo.board_games.go.config.go_alphazero_bot_mode_config import go_alphazero_config
elif self._cfg.simulation_env_config_type == 'self_play':
from zoo.board_games.go.config.go_alphazero_sp_mode_config import go_alphazero_config
elif self._cfg.simulation_env_config_type == 'league':
from zoo.board_games.go.config.go_alphazero_league_config import go_alphazero_config
elif self._cfg.simulation_env_config_type == 'sampled_play_with_bot':
from zoo.board_games.go.config.go_sampled_alphazero_bot_mode_config import \
go_sampled_alphazero_config as go_alphazero_config
self.simulate_env = GoEnv(go_alphazero_config.env)
@torch.no_grad()
def _policy_value_func(self, environment: 'Environment') -> Tuple[Dict[int, np.ndarray], float]:
# Retrieve the legal actions in the current environment
legal_actions = environment.legal_actions
# Retrieve the current state and its scale from the environment
current_state, state_scale = environment.current_state()
# Convert the state scale to a PyTorch FloatTensor, adding a dimension to match the model's input requirements
state_scale_tensor = torch.from_numpy(state_scale).to(
device=self._device, dtype=torch.float
).unsqueeze(0)
# Compute action probabilities and state value for the current state using the policy model, without gradient computation
with torch.no_grad():
action_probabilities, state_value = self._policy_model.compute_policy_value(state_scale_tensor)
# Extract the probabilities of the legal actions from the action probabilities, and convert the result to a numpy array
legal_action_probabilities = dict(
zip(legal_actions, action_probabilities.squeeze(0)[legal_actions].detach().cpu().numpy()))
# Return probabilities of the legal actions and the state value
return legal_action_probabilities, state_value.item()
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Register the variables to be monitored in learn mode. The registered variables will be logged in
tensorboard according to the return value ``_forward_learn``.
"""
return super()._monitor_vars_learn() + [
'cur_lr', 'total_loss', 'policy_loss', 'value_loss', 'entropy_loss', 'total_grad_norm_before_clip',
'collect_mcts_temperature'
]
def _process_transition(self, obs: Dict, model_output: Dict[str, torch.Tensor], timestep: namedtuple) -> Dict:
"""
Overview:
Generate the dict type transition (one timestep) data from policy learning.
"""
if 'katago_game_state' in obs.keys():
del obs['katago_game_state']
# if 'katago_game_state' in timestep.obs.keys():
# del timestep.obs['katago_game_state']
# Note: used in _foward_collect in alphazero_collector now
return {
'obs': obs,
'next_obs': timestep.obs,
'action': model_output['action'],
'root_sampled_actions': model_output['root_sampled_actions'],
'probs': model_output['probs'],
'reward': timestep.reward,
'done': timestep.done,
}
def _get_train_sample(self, data):
# be compatible with DI-engine Policy class
pass
|