File size: 6,151 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import time
import torch
import torch.nn.functional as F
from hpc_rll.origin.ppo import ppo_error, ppo_data
from hpc_rll.rl_utils.ppo import PPO
from testbase import mean_relative_error, times

assert torch.cuda.is_available()
use_cuda = True

B = 128
N = 128
clip_ratio = 0.2
use_value_clip = True
dual_clip = None


def ppo_val():
    ori_logits_new = torch.randn(B, N)
    ori_logits_old = torch.randn(B, N)
    ori_action = torch.randint(0, N, size=(B, ))
    ori_value_new = torch.randn(B)
    ori_value_old = torch.randn(B)
    ori_adv = torch.randn(B)
    ori_return = torch.randn(B)
    ori_weight = torch.randn(B)

    hpc_logits_new = ori_logits_new.clone().detach()
    hpc_logits_old = ori_logits_old.clone().detach()
    hpc_action = ori_action.clone().detach()
    hpc_value_new = ori_value_new.clone().detach()
    hpc_value_old = ori_value_old.clone().detach()
    hpc_adv = ori_adv.clone().detach()
    hpc_return = ori_return.clone().detach()
    hpc_weight = ori_weight.clone().detach()
    hpc_ppo = PPO(B, N)

    if use_cuda:
        ori_logits_new = ori_logits_new.cuda()
        ori_logits_old = ori_logits_old.cuda()
        ori_action = ori_action.cuda()
        ori_value_new = ori_value_new.cuda()
        ori_value_old = ori_value_old.cuda()
        ori_adv = ori_adv.cuda()
        ori_return = ori_return.cuda()
        ori_weight = ori_weight.cuda()

        hpc_logits_new = hpc_logits_new.cuda()
        hpc_logits_old = hpc_logits_old.cuda()
        hpc_action = hpc_action.cuda()
        hpc_value_new = hpc_value_new.cuda()
        hpc_value_old = hpc_value_old.cuda()
        hpc_adv = hpc_adv.cuda()
        hpc_return = hpc_return.cuda()
        hpc_weight = hpc_weight.cuda()
        hpc_ppo = hpc_ppo.cuda()

    ori_logits_new.requires_grad_(True)
    ori_value_new.requires_grad_(True)
    ori_loss, ori_info = ppo_error(
        ppo_data(
            ori_logits_new, ori_logits_old, ori_action, ori_value_new, ori_value_old, ori_adv, ori_return, ori_weight
        ), clip_ratio, use_value_clip, dual_clip
    )
    ori_loss = sum(ori_loss)
    ori_loss.backward()

    hpc_logits_new.requires_grad_(True)
    hpc_value_new.requires_grad_(True)
    hpc_loss, hpc_info = hpc_ppo(
        hpc_logits_new, hpc_logits_old, hpc_action, hpc_value_new, hpc_value_old, hpc_adv, hpc_return, hpc_weight,
        clip_ratio, use_value_clip, dual_clip
    )
    hpc_loss = sum(hpc_loss)
    hpc_loss.backward()

    print("ori_info: " + str(ori_info))
    print("hpc_info: " + str(hpc_info))
    mre = mean_relative_error(
        torch.flatten(ori_loss).cpu().detach().numpy(),
        torch.flatten(hpc_loss).cpu().detach().numpy()
    )
    print("ppo fp loss mean_relative_error: " + str(mre))
    mre = mean_relative_error(
        torch.flatten(ori_logits_new.grad).cpu().detach().numpy(),
        torch.flatten(hpc_logits_new.grad).cpu().detach().numpy()
    )
    print("ppo bp logits_new mean_relative_error: " + str(mre))
    mre = mean_relative_error(
        torch.flatten(ori_value_new.grad).cpu().detach().numpy(),
        torch.flatten(hpc_value_new.grad).cpu().detach().numpy()
    )
    print("ppo bp value_new mean_relative_error: " + str(mre))


def ppo_perf():
    ori_logits_new = torch.randn(B, N)
    ori_logits_old = torch.randn(B, N)
    ori_action = torch.randint(0, N, size=(B, ))
    ori_value_new = torch.randn(B)
    ori_value_old = torch.randn(B)
    ori_adv = torch.randn(B)
    ori_return = torch.randn(B)
    ori_weight = torch.randn(B)

    hpc_logits_new = ori_logits_new.clone().detach()
    hpc_logits_old = ori_logits_old.clone().detach()
    hpc_action = ori_action.clone().detach()
    hpc_value_new = ori_value_new.clone().detach()
    hpc_value_old = ori_value_old.clone().detach()
    hpc_adv = ori_adv.clone().detach()
    hpc_return = ori_return.clone().detach()
    hpc_weight = ori_weight.clone().detach()
    hpc_ppo = PPO(B, N)

    if use_cuda:
        ori_logits_new = ori_logits_new.cuda()
        ori_logits_old = ori_logits_old.cuda()
        ori_action = ori_action.cuda()
        ori_value_new = ori_value_new.cuda()
        ori_value_old = ori_value_old.cuda()
        ori_adv = ori_adv.cuda()
        ori_return = ori_return.cuda()
        ori_weight = ori_weight.cuda()

        hpc_logits_new = hpc_logits_new.cuda()
        hpc_logits_old = hpc_logits_old.cuda()
        hpc_action = hpc_action.cuda()
        hpc_value_new = hpc_value_new.cuda()
        hpc_value_old = hpc_value_old.cuda()
        hpc_adv = hpc_adv.cuda()
        hpc_return = hpc_return.cuda()
        hpc_weight = hpc_weight.cuda()
        hpc_ppo = hpc_ppo.cuda()

    ori_logits_new.requires_grad_(True)
    ori_value_new.requires_grad_(True)
    for i in range(times):
        t = time.time()
        ori_loss, ori_info = ppo_error(
            ppo_data(
                ori_logits_new, ori_logits_old, ori_action, ori_value_new, ori_value_old, ori_adv, ori_return,
                ori_weight
            ), clip_ratio, use_value_clip, dual_clip
        )
        ori_loss = sum(ori_loss)
        ori_loss.backward()
        if use_cuda:
            torch.cuda.synchronize()
        print('epoch: {}, origin ppo cost time: {}'.format(i, time.time() - t))

    hpc_logits_new.requires_grad_(True)
    hpc_value_new.requires_grad_(True)
    for i in range(times):
        t = time.time()
        hpc_loss, hpc_info = hpc_ppo(
            hpc_logits_new, hpc_logits_old, hpc_action, hpc_value_new, hpc_value_old, hpc_adv, hpc_return, hpc_weight,
            clip_ratio, use_value_clip, dual_clip
        )
        hpc_loss = sum(hpc_loss)
        hpc_loss.backward()
        if use_cuda:
            torch.cuda.synchronize()
        print('epoch: {}, hpc ppo cost time: {}'.format(i, time.time() - t))


if __name__ == '__main__':
    print(
        "target problem: B = {}, N = {}, clip_ratio = {}, use_value_clip = {}, dual_clip = {}".format(
            B, N, clip_ratio, use_value_clip, dual_clip
        )
    )
    print("================run ppo validation test================")
    ppo_val()
    print("================run ppo performance test================")
    ppo_perf()