Spaces:
Runtime error
Runtime error
File size: 11,073 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
"""Multi-Head Attention layer definition."""
import math
from typing import Tuple, Optional
import torch
from torch import nn
import torch.nn.functional as F
from modules.wenet_extractor.transformer.attention import MultiHeadedAttention
class GroupedRelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding.
Paper:
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/2109.01163
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head, n_feat, dropout_rate, group_size=3):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_head, n_feat, dropout_rate)
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
self.group_size = group_size
self.d_k = n_feat // n_head # for GroupedAttention
self.n_feat = n_feat
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k * self.group_size))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k * self.group_size))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x, zero_triu: bool = False):
"""Compute relative positinal encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, size).
zero_triu (bool): If true, return the lower triangular part of
the matrix.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros(
(x.size()[0], x.size()[1], x.size()[2], 1), device=x.device, dtype=x.dtype
)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0], x.size()[1], x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)
if zero_triu:
ones = torch.ones((x.size(2), x.size(3)))
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
return x
def pad4group(self, Q, K, V, P, mask, group_size: int = 3):
"""
q: (#batch, time1, size) -> (#batch, head, time1, size/head)
k,v: (#batch, time2, size) -> (#batch, head, time2, size/head)
p: (#batch, time2, size)
"""
# Compute Overflows
overflow_Q = Q.size(2) % group_size
overflow_KV = K.size(2) % group_size
# if-else for ONNX export
# 0 // 0.00000000000000001 = 0
# 1 // 1.00000000000000001 = 1
padding_Q = (group_size - overflow_Q) * int(
overflow_Q // (overflow_Q + 0.00000000000000001)
)
padding_KV = (group_size - overflow_KV) * int(
overflow_KV // (overflow_KV + 0.00000000000000001)
)
batch_size, _, seq_len_KV, _ = K.size()
# Input Padding (B, T, D) -> (B, T + P, D)
Q = F.pad(Q, (0, 0, 0, padding_Q), value=0.0)
K = F.pad(K, (0, 0, 0, padding_KV), value=0.0)
V = F.pad(V, (0, 0, 0, padding_KV), value=0.0)
if mask is not None and mask.size(2) > 0: # time2 > 0:
mask = mask[:, ::group_size, ::group_size]
Q = (
Q.transpose(1, 2)
.contiguous()
.view(batch_size, -1, self.h, self.d_k * group_size)
.transpose(1, 2)
)
K = (
K.transpose(1, 2)
.contiguous()
.view(batch_size, -1, self.h, self.d_k * group_size)
.transpose(1, 2)
)
V = (
V.transpose(1, 2)
.contiguous()
.view(batch_size, -1, self.h, self.d_k * group_size)
.transpose(1, 2)
)
# process pos_emb
P_batch_size = P.size(0)
overflow_P = P.size(1) % group_size
padding_P = group_size - overflow_P if overflow_P else 0
P = F.pad(P, (0, 0, 0, padding_P), value=0.0)
P = P.view(P_batch_size, -1, self.h, self.d_k * group_size).transpose(1, 2)
return Q, K, V, P, mask, padding_Q
def forward_attention(
self,
value: torch.Tensor,
scores: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
padding_q: Optional[int] = None,
) -> torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
padding_q : for GroupedAttention in efficent conformer
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
# 1st chunk to ease the onnx export.]
# 2. pytorch training
if mask.size(2) > 0: # time2 > 0
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
# For last chunk, time2 might be larger than scores.size(-1)
mask = mask[:, :, :, : scores.size(-1)] # (batch, 1, *, time2)
scores = scores.masked_fill(mask, -float("inf"))
attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0
) # (batch, head, time1, time2)
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
# 1. onnx(16/-1, -1/-1, 16/0)
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
# n_feat!=h*d_k may be happened in GroupAttention
x = (
x.transpose(1, 2).contiguous().view(n_batch, -1, self.n_feat)
) # (batch, time1, d_model)
if padding_q is not None:
# for GroupedAttention in efficent conformer
x = x[:, : x.size(1) - padding_q]
return self.linear_out(x) # (batch, time1, d_model)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q = self.linear_q(query)
k = self.linear_k(key) # (#batch, time2, size)
v = self.linear_v(value)
p = self.linear_pos(pos_emb) # (#batch, time2, size)
batch_size, seq_len_KV, _ = k.size() # seq_len_KV = time2
# (#batch, time2, size) -> (#batch, head, time2, size/head)
q = q.view(batch_size, -1, self.h, self.d_k).transpose(1, 2)
k = k.view(batch_size, -1, self.h, self.d_k).transpose(1, 2)
v = v.view(batch_size, -1, self.h, self.d_k).transpose(1, 2)
if cache.size(0) > 0:
# use attention cache
key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
new_cache = torch.cat((k, v), dim=-1)
# May be k and p does not match. eg. time2=18+18/2=27 > mask=36/2=18
if mask is not None and mask.size(2) > 0:
time2 = mask.size(2)
k = k[:, :, -time2:, :]
v = v[:, :, -time2:, :]
# q k v p: (batch, head, time1, d_k)
q, k, v, p, mask, padding_q = self.pad4group(q, k, v, p, mask, self.group_size)
# q_with_bias_u & q_with_bias_v = (batch, head, time1, d_k)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# Remove rel_shift since it is useless in speech recognition,
# and it requires special attention for streaming.
# matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k * self.group_size
) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask, padding_q), new_cache
|