File size: 59,612 Bytes
95d0904
 
 
7afebbb
89eea48
95d0904
 
52bdf5b
95d0904
89eea48
95d0904
89eea48
95d0904
 
 
 
 
 
 
 
 
 
89eea48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d0904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd5d7d7
 
95d0904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd5d7d7
95d0904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bdf5b
95d0904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bdf5b
95d0904
 
 
 
 
 
 
 
 
 
 
 
37afe62
95d0904
 
 
 
 
 
 
 
37afe62
95d0904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bdf5b
95d0904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bdf5b
95d0904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bdf5b
95d0904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bdf5b
95d0904
 
 
 
 
 
 
52bdf5b
95d0904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bdf5b
95d0904
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
import pandas as pd
import numpy as np
import os
import pickle
from prefixspan import PrefixSpan
import gradio as gr
import altair as alt
from plot import Plot
alt.data_transformers.enable("vegafusion")
# from dynabench.task_evaluator import *

BASE_DIR = "db"
MODELS = ['qwenvl-chat', 'qwenvl', 'llava15-7b', 'llava15-13b', 'instructblip-vicuna13b', 'instructblip-vicuna7b']
VIDEO_MODELS = ['video-chat2-7b','video-llama2-7b','video-llama2-13b','chat-univi-7b','chat-univi-13b','video-llava-7b','video-chatgpt-7b']
domains = ["imageqa-2d-sticker", "imageqa-3d-tabletop", "imageqa-scene-graph", "videoqa-3d-tabletop", "videoqa-scene-graph"]
domain2folder = {"imageqa-2d-sticker": "2d", 
                 "imageqa-3d-tabletop": "3d", 
                 "imageqa-scene-graph": "sg", 
                 "videoqa-3d-tabletop": "video-3d", 
                 "videoqa-scene-graph": "video-sg", 
                 None: '2d'}

def find_frequent_patterns(k, df, scores=None):
	if len(df) == 0:
		return []

	df = df.reset_index(drop=True)
	cols = df.columns.to_list()
	df = df.fillna('').astype('str')
	db = [[(c, v) for c, v in zip(cols, d) if v] for d in df.values.tolist()]

	ps = PrefixSpan(db)
	patterns = ps.topk(k, closed=True)
	if scores is None:
		return patterns
	else:
		aggregated_scores = []
		scores = np.asarray(scores)
		for count, pattern in patterns:
			q = ' and '.join([f"`{k}` == {repr(v)}" for k, v in pattern])
			indices = df.query(q).index.to_numpy()
			aggregated_scores.append(np.mean(scores[indices]))
		return patterns, aggregated_scores

def update_partition_and_models(domain):
    domain = domain2folder[domain]
    path = f"{BASE_DIR}/{domain}"
    

    if os.path.exists(path):
        partitions = list_directories(path)
        if domain.find("video") > -1:
            model = gr.Dropdown(VIDEO_MODELS, value=VIDEO_MODELS[0], label="model")
        else:  
            model = gr.Dropdown(MODELS, value=MODELS[0], label="model")

        partition = gr.Dropdown(partitions, value=partitions[0], label="task space of the following task generator")
        return [partition, model]
    else:
        partition = gr.Dropdown([], value=None, label="task space of the following task generator")
        model = gr.Dropdown([], value=None, label="model")
        return [partition, model]
    
def update_partition_and_models_and_baselines(domain):
    domain = domain2folder[domain]
    path = f"{BASE_DIR}/{domain}"
    
    if os.path.exists(path):
        partitions = list_directories(path)
        if domain.find("video") > -1:
            model = gr.Dropdown(VIDEO_MODELS, value=VIDEO_MODELS[0], label="model")
            baseline = gr.Dropdown(VIDEO_MODELS, value=VIDEO_MODELS[0], label="baseline")
        else:  
            model = gr.Dropdown(MODELS, value=MODELS[0], label="model")
            baseline = gr.Dropdown(MODELS, value=MODELS[0], label="baseline")

        partition = gr.Dropdown(partitions, value=partitions[0], label="task space of the following task generator") 
    else:
        partition = gr.Dropdown([], value=None, label="task space of the following task generator")
        model = gr.Dropdown([], value=None, label="model")
        baseline = gr.Dropdown([], value=None, label="baseline")
    return [partition, model, baseline]
    
def get_filtered_task_ids(domain, partition, models, rank, k, threshold, baseline):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
    if not os.path.exists(data_path):
        return []
    else:
        merged_df = pd.read_csv(data_path)
        merged_df.rename(columns={'llavav1.5-7b': 'llava15-7b', 'llavav1.5-13b': 'llava15-13b'}, inplace=True)
        
        df = merged_df

        select_top = rank == "top"
        # Model X is good / bad at
        for model in models:
            if baseline:
                df = df[df[model] >= df[baseline]]
            else:
                if select_top:
                    df = df[df[model] >= threshold]
                else:
                    df = df[df[model] <= threshold]
        if not baseline: 
            df['mean score'] = df[models].mean(axis=1)
            df = df.sort_values(by='mean score', ascending=False)
            df = df.iloc[:k, :] if select_top else df.iloc[-k:, :]

        task_ids = list(df.index)
    return task_ids

def plot_patterns(domain, partition, models, rank, k, threshold, baseline, pattern, order):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
    if not os.path.exists(data_path):
        return None
    task_ids = get_filtered_task_ids(domain, partition, models, rank, k, threshold, baseline)
    expand_df = pd.read_csv(data_path)

    chart_df = expand_df[expand_df['model'].isin((models + [baseline]) if baseline else models)]
    chart_df = chart_df[chart_df['task id'].isin(task_ids)]
    print(pattern)
    freq, cols = eval(pattern)
    pattern_str = ""
    df = chart_df
    for col in cols:
        col_name, col_val = col
        try:
            col_val = int(col_val)
        except:
            col_val = col_val
        df = df[df[col_name] == col_val]
        pattern_str += f"{col_name} = {col_val}, "
        print(len(df))
    
    if baseline:
        model_str = (', '.join(models) if len(models) > 1 else models[0])
        phrase = f'{model_str} perform' if len(models) > 1 else f'{model_str} performs'
        title = f"{phrase} better than {baseline} on {freq} tasks where {pattern_str[:-2]}"
    else:
        title = f"Models are {'best' if rank == 'top' else 'worst'} at {freq} tasks where {pattern_str[:-2]}"
    
    chart = alt.Chart(df).mark_bar().encode(
            alt.X('model:N', 
                sort=alt.EncodingSortField(field=f'score', order=order, op="mean"), 
                axis=alt.Axis(labels=False, tickSize=0)), # no title, no label angle),
            alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
            alt.Color('model:N').legend(),
        ).properties(
            width=400,
            height=300,
            title=title
        )
    return chart

def plot_embedding(domain, partition, category):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
    
    if os.path.exists(data_path):
        merged_df = pd.read_csv(data_path)
        # models = merged_df.columns 
        has_image = 'image' in merged_df
        chart = alt.Chart(merged_df).mark_point(size=30, filled=True).encode(
            alt.OpacityValue(0.5),
            alt.X('x:Q', title="UMAP Component 1"), 
            alt.Y('y:Q', title="UMAP Component 2"),
            alt.Color(f'{category}:N'),
            tooltip=['question', 'answer'] + (['image'] if has_image else []),  
        ).properties(
            width=800,
            height=800,
            title="UMAP Projected Task Embeddings"
        ).configure_axis(
            labelFontSize=25,
            titleFontSize=25,
        ).configure_title(
            fontSize=40
        ).configure_legend(
            labelFontSize=25,
            titleFontSize=25,
        ).interactive()
        return chart
    else:
        return None



def plot_multi_models(domain, partition, category, cat_options, models, order, pattern, aggregate="mean"):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
    if not os.path.exists(data_path):
        return None
    expand_df = pd.read_csv(data_path)
    print(pattern)
    if pattern is not None:
        df = expand_df
        freq, cols = eval(pattern)
        pattern_str = ""
        for col in cols:
            col_name, col_val = col
            try:
                col_val = int(col_val)
            except:
                col_val = col_val
            df = df[df[col_name] == col_val]
            pattern_str += f"{col_name} = {col_val}, "
        chart = alt.Chart(df).mark_bar().encode(
            alt.X('model:N', 
                sort=alt.EncodingSortField(field=f'score', order='ascending', op="mean"), 
                axis=alt.Axis(labels=False, tickSize=0)), # no title, no label angle),
            alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
            alt.Color('model:N').legend(),
        ).properties(
            width=200,
            height=100,
            title=f"How do models perform on tasks where {pattern_str[:-2]} (N={freq})?"
        )
        return chart
    else:
        df = expand_df[(expand_df['model'].isin(models)) & (expand_df[category].isin(cat_options))]
        if len(models) > 1:
            chart = alt.Chart(df).mark_bar().encode(
                alt.X('model:N', 
                    sort=alt.EncodingSortField(field=f'score', order=order, op="mean"), 
                    axis=alt.Axis(labels=False, tickSize=0, title=None)),
                alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
                alt.Color('model:N').legend(),
                alt.Column(f'{category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom'))
            ).properties(
                width=200,
                height=100,
                title=f"How do models perform across {category}?"
            )
        else:
            chart = alt.Chart(df).mark_bar().encode(
                alt.X(f'{category}:N', sort=alt.EncodingSortField(field=f'score', order=order, op="mean")), # no title, no label angle),
                alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
                alt.Color(f'{category}:N').legend(None),
            ).properties(
                width=200,
                height=100,
                title=f"How does {models[0]} perform across {category}?"
            )
        chart = chart.configure_title(fontSize=15, offset=5, orient='top', anchor='middle')
        return chart


def plot(domain, partition, models, rank, k, threshold, baseline, order, category, cat_options):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
    expand_data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
    # task_plan.reset_index(inplace=True)
    if not os.path.exists(data_path) or not os.path.exists(expand_data_path):
        return None
    else:
        merged_df = pd.read_csv(data_path)
        merged_df.rename(columns={'llavav1.5-7b': 'llava15-7b', 'llavav1.5-13b': 'llava15-13b'}, inplace=True)
        expand_df = pd.read_csv(expand_data_path)
        
        df = merged_df

        select_top = rank == "top"
        # Model X is good / bad at
        for model in models:
            if baseline:
                df = df[df[model] >= df[baseline]]
            else:
                if select_top:
                    df = df[df[model] >= threshold]
                else:
                    df = df[df[model] <= threshold]
        if not baseline: 
            df['mean score'] = df[models].mean(axis=1)
            df = df.sort_values(by='mean score', ascending=False)
            df = df.iloc[:k, :] if select_top else df.iloc[-k:, :]

        task_ids = list(df.index)
        if baseline:
            models += [baseline]

        chart_df = expand_df[expand_df['model'].isin(models)]
        chart_df = chart_df[chart_df['task id'].isin(task_ids)]

        if cat_options:
            df = chart_df[chart_df[category].isin(cat_options)]
        else:
            df = chart_df
        if baseline:
            model_str = (', '.join(models) if len(models) > 1 else models[0])
            phrase = f'{model_str} perform' if len(models) > 1 else f'{model_str} performs'
            title = f"Are there any tasks where {phrase} better than {baseline} (by {category})?"
            
        else:
            title = f"What tasks are models {'best' if select_top else 'worst'} at by {category}?"

        if len(models) > 1:
            chart = alt.Chart(df).mark_bar().encode(
                alt.X('model:N', 
                    sort=alt.EncodingSortField(field=f'score', order=order, op="mean"), 
                    axis=alt.Axis(labels=False, tickSize=0, title=None)),
                alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
                alt.Color('model:N').legend(),
                alt.Column(f'{category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom'))
            ).properties(
                width=200,
                height=100,
                title=title
            )
        else:
            chart = alt.Chart(df).mark_bar().encode(
                alt.X(f'{category}:N', sort=alt.EncodingSortField(field=f'score', order=order, op="mean")), # no title, no label angle),
                alt.Y('mean(score):Q', scale=alt.Scale(zero=True)),
                alt.Color(f'{category}:N').legend(None),
            ).properties(
                width=200,
                height=100,
                title=f"What tasks is model {models[0]} {'best' if select_top else 'worst'} at by {category}?"
            )
        chart = chart.configure_title(fontSize=15, offset=5, orient='top', anchor='middle')
        return chart
   

def get_frequent_patterns(task_plan, scores):
    find_frequent_patterns(k=10, df=task_plan, scores=scores)

def list_directories(path):
    """List all directories within a given path."""
    return [d for d in os.listdir(path) if os.path.isdir(os.path.join(path, d))]


def update_category(domain, partition):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
    if os.path.exists(data_path):
        data = pickle.load(open(data_path, 'rb'))
        categories = list(data.columns)
        category = gr.Dropdown(categories+["task id"], value=None, label="task metadata", interactive=True)
        return category
    else:
        return gr.Dropdown([], value=None, label="task metadata")
    
def update_category2(domain, partition, existing_category):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
    if os.path.exists(data_path):
        data = pickle.load(open(data_path, 'rb'))
        categories = list(data.columns)
        if existing_category and existing_category in categories:
            categories.remove(existing_category)
        category = gr.Dropdown(categories, value=None, label="Optional: second task metadata", interactive=True)
        return category
    else:
        return gr.Dropdown([], value=None, label="task metadata")

def update_partition(domain):
    domain = domain2folder[domain]
    path = f"{BASE_DIR}/{domain}"
    if os.path.exists(path):
        partitions = list_directories(path)
        return gr.Dropdown(partitions, value=partitions[0], label="task space of the following task generator")
    else:
        return gr.Dropdown([], value=None, label="task space of the following task generator")

def update_k(domain, partition, category=None):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
    if os.path.exists(data_path):
        data = pd.read_csv(data_path)
        max_k = len(data[category].unique()) if category and category != "task id" else len(data)
        mid = max_k // 2
        return gr.Slider(1, max_k, mid, step=1.0, label="k")
    else:
        return gr.Slider(1, 1, 1, step=1.0, label="k")

# def update_category_values(domain, partition, category):
#     data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
#     if os.path.exists(data_path) and category is not None:
#         data = pd.read_csv(data_path)
#         uni_cats = list(data[category].unique())
#         return gr.Dropdown(uni_cats, multiselect=True, value=None, interactive=True, label="category values")
#     else:
#         return gr.Dropdown([], multiselect=True, value=None, interactive=False, label="category values")
    
# def update_category_values(domain, partition, models, rank, k, threshold, baseline, category):
#     data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"

#     if not os.path.exists(data_path):
#         return gr.Dropdown([], multiselect=True, value=None, interactive=False, label="category values")
#     else:
#         merged_df = pd.read_csv(data_path)
#         merged_df.rename(columns={'llavav1.5-7b': 'llava15-7b', 'llavav1.5-13b': 'llava15-13b'}, inplace=True)
        
#         df = merged_df

#         select_top = rank == "top"
#         # Model X is good / bad at
#         for model in models:
#             if baseline:
#                 df = df[df[model] >= df[baseline]]
#             else:
#                 if select_top:
#                     df = df[df[model] >= threshold]
#                 else:
#                     df = df[df[model] <= threshold]
#         if not baseline: 
#             df['mean score'] = df[models].mean(axis=1)
#             df = df.sort_values(by='mean score', ascending=False)
#             df = df.iloc[:k, :] if select_top else df.iloc[-k:, :]
#         uni_cats = list(df[category].unique())
#         return gr.Dropdown(uni_cats, multiselect=True, value=None, interactive=True, label="category values")

    
def update_tasks(domain, partition, find_pattern):
    domain = domain2folder[domain]
    if find_pattern == "yes":
        k1 = gr.Slider(1, 10000, 10, step=1.0, label="k", interactive=True)
        pattern = gr.Dropdown([], value=None, interactive=True, label="pattern")
        category1 =  gr.Dropdown([], value=None, interactive=False, label="task metadata")
        return [k1,  pattern, category1]
    else:
        k1 = gr.Slider(1, 10000, 10, step=1.0, label="k", interactive=False)
        pattern = gr.Dropdown([], value=None, interactive=False, label="pattern")

        data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
        if os.path.exists(data_path):
            data = pd.read_csv(data_path)
            non_columns =  MODELS + ['question', 'answer']
            categories = [cat for cat in list(data.columns) if cat not in non_columns]
            category1 = gr.Dropdown(categories, value=categories[0], interactive=True, label="task metadata")
        else:
            category1 = gr.Dropdown([], value=None, label="task metadata")
        return [k1, pattern, category1]


def update_pattern(domain, partition, k):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/patterns.pkl"
    if not os.path.exists(data_path):
        return gr.Dropdown([], value=None, interactive=False, label="pattern")
    else:
        results = pickle.load(open(data_path, 'rb'))
        patterns = results[0]
        patterns = [str(p) for p in patterns]
        print(patterns)
        return gr.Dropdown(patterns[:k], value=None, interactive=True, label="pattern")

def update_threshold(domain, partition, baseline):
    domain = domain2folder[domain]
    print(baseline)
    if baseline:
        rank = gr.Radio(['top', 'bottom'], value='top', label="rank", interactive=False)
        k = gr.Slider(1, 10000, 10, step=1.0, label="k", interactive=False)
        threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=False)
        return [rank, k, threshold]
    else:
        data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
        if os.path.exists(data_path):
            data = pd.read_csv(data_path)
            max_k = len(data)
            print(max_k)
            k = gr.Slider(1, max_k, 10, step=1.0, label="k", interactive=True)
        else:
            k = gr.Slider(1, 1, 1, step=1.0, label="k")
        rank = gr.Radio(['top', 'bottom'], value='top', label="rank", interactive=True)

        threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=True)
        return [rank, k, threshold]

def calc_surprisingness(model, scores, embeddings, k):
    scores = scores[model].to_numpy()
    sim = embeddings @ embeddings.T
    # print("sim values:", sim.shape, sim)
    indices = np.argsort(-sim)[:, :k]
    # print("indices:", indices.shape, indices)
    score_diff = scores[:, None] - scores[indices]
    # print("score differences:", score_diff.shape, score_diff)
    sim = sim[np.arange(len(scores))[:, None], indices]
    # print("top10 sim:", sim.shape, sim)
    all_surprisingness = score_diff * sim
    # print("all surprisingness:", all_surprisingness.shape, all_surprisingness)
    mean_surprisingness = np.mean(score_diff * sim, axis=1)
    res = {'similarity': sim, 
           'task index': indices,
           'score difference': score_diff, 
           'all surprisingness': all_surprisingness, 
           'mean surprisingness': mean_surprisingness
          }
    return res


def plot_surprisingness(domain, partition, model, rank, k, num_neighbors):
    domain = domain2folder[domain]
    # model = model[0]
    model_str = model.replace("-", "_")

    # sp_path = f"{BASE_DIR}/{domain}/{partition}/surprise_data.csv"
    sp_pkl = f"{BASE_DIR}/{domain}/{partition}/{model_str}_surprise.pkl"
    merged_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
    if os.path.exists(sp_pkl) and os.path.exists(merged_path): # and not os.path.exists(sp_path)
        # if os.path.exists(sp_path):
        #     sp_df = pd.read_csv(sp_path)
        #     # res = calc_surprisingness(model, scores, embeds, num_neighbors)
        #     # k = 10
        #     model = 'qwenvl'
        #     num_neighbors = 10
        # if os.path.exists(sp_pkl):
        res = pickle.load(open(sp_pkl, 'rb'))
        
        total_num_task = res['task index'].shape[0]
        all_records = []
        for i in range(total_num_task):
            mean_surprisingness = np.mean(res['all surprisingness'][i, :num_neighbors])
            for j in range(num_neighbors):
                neighbor_id = res['task index'][i, j]
                score_diff = res['score difference'][i, j]
                surprisingness = res['all surprisingness'][i, j]
                similarity = res['similarity'][i, j]

                record = {"task id": i, 
                        "neighbor rank": j, 
                        "neighbor id": neighbor_id, 
                        "score difference": score_diff,
                        "surprisingness": surprisingness, 
                        "mean surprisingness": mean_surprisingness,
                        "similarity": similarity
                        }
                # print(record)
                all_records.append(record)
        sp_df = pd.DataFrame.from_records(all_records)
        sp_df = sp_df.sort_values(by="mean surprisingness", ascending=False)
        
        num_rows = k * num_neighbors
        df = sp_df.iloc[:num_rows, :] if rank == "top" else sp_df.iloc[-num_rows:, :]
        print(len(df))
        
        df['is target'] = df.apply(lambda row: int(row['task id'] == row['neighbor id']), axis=1)

        merged_df = pd.read_csv(merged_path)
        for col in merged_df.columns:
            df[col] = df.apply(lambda row: merged_df.iloc[int(row['neighbor id']), :][col], axis=1)
                    
        tooltips = ['neighbor id'] + ['image', 'question', 'answer', model]

        print(df.head())
        pts = alt.selection_point(encodings=['x'])
        embeds = alt.Chart(df).mark_point(size=30, filled=True).encode(
            alt.OpacityValue(0.5),
            alt.X('x:Q', scale=alt.Scale(zero=False)), 
            alt.Y('y:Q', scale=alt.Scale(zero=False)),
            alt.Color(f'{model}:Q'), #scale=alt.Scale(domain=[1, 0.5, 0], range=['blue', 'white', 'red'], interpolate='rgb')
            alt.Size("is target:N", legend=None, scale=alt.Scale(domain=[0, 1], range=[300, 500])),
            alt.Shape("is target:N", legend=None, scale=alt.Scale(domain=[0, 1], range=['circle', 'triangle'])),
            alt.Order("is target:N"),
            tooltip=tooltips,  
        ).properties(
            width=400,
            height=400,
            title=f"What are the tasks {model} is surprisingly {'good' if rank == 'top' else 'bad'} at compared to {num_neighbors} similar tasks?"
        ).transform_filter(
            pts
        )

        bar = alt.Chart(df).mark_bar().encode(
            alt.Y('mean(mean surprisingness):Q'),
            alt.X('task id:N', sort=alt.EncodingSortField(field='mean surprisingness', order='descending')),
            color=alt.condition(pts, alt.ColorValue("steelblue"), alt.ColorValue("grey")), #
        ).add_params(pts).properties(
            width=400,
            height=200,
        )

        chart = alt.hconcat(
            bar,
            embeds
        ).resolve_legend(
            color="independent",
            size="independent"
        ).configure_title(
            fontSize=20
        ).configure_legend(
            labelFontSize=10,
            titleFontSize=10,
        )
        return chart
    else:
        print(sp_pkl, merged_path)
        return None
    


def plot_task_distribution(domain, partition, category):
    domain = domain2folder[domain]
    task_plan = pickle.load(open(f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl", "rb"))
    task_plan.reset_index(inplace=True)
    col_name = category
    task_plan_cnt = task_plan.groupby(col_name)['index'].count().reset_index()
    task_plan_cnt.rename(columns={'index': 'count'}, inplace=True)
    task_plan_cnt['frequency (%)'] = round(task_plan_cnt['count'] / len(task_plan) * 100, 2)
    task_plan_cnt.head()

    base = alt.Chart(task_plan_cnt).encode(
    alt.Theta("count:Q").stack(True),
    alt.Color(f"{col_name}:N").legend(),
    tooltip=[col_name, 'count', 'frequency (%)']
    )
    pie = base.mark_arc(outerRadius=120)
    return pie

def plot_all(domain, partition, models, category1, category2, agg):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
    if not os.path.exists(data_path):
        return None
    expand_df = pd.read_csv(data_path)
    chart_df = expand_df[expand_df['model'].isin(models)]
    if category2:
    
        color_val = f'{agg}(score):Q'

        chart = alt.Chart(chart_df).mark_rect().encode(
            alt.X(f'{category1}:N', sort=alt.EncodingSortField(field='score', order='ascending', op=agg)),
            alt.Y(f'{category2}:N', sort=alt.EncodingSortField(field='score', order='descending', op=agg)), # no title, no label angle),
            alt.Color(color_val),
            alt.Tooltip('score', aggregate=agg, title=f"{agg} score"),  
        ).properties(
            width=800,
            height=200,
        )
    else:
        category = "index" if category1 == "task id" else category1
        # cat_options = list(chart_df[category].unique())
        # cat_options = cat_options[:5]
        y_val = f'{agg}(score):Q'
        df = chart_df
        # df = chart_df[chart_df[category].isin(cat_options)]
        if len(models) > 1:
            chart = alt.Chart(df).mark_bar().encode(
                alt.X('model:N', 
                    sort=alt.EncodingSortField(field=f'score', order='ascending', op=agg), 
                    axis=alt.Axis(labels=False, tickSize=0, title=None)),
                alt.Y(y_val, scale=alt.Scale(zero=True)),
                alt.Color('model:N').legend(),
                alt.Column(f'{category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom'))
            ).properties(
                width=200,
                height=100,
                title=f"How do models perform across {category}?"
            )
        else:
            chart = alt.Chart(df).mark_bar().encode(
                alt.X(f'{category}:N', sort=alt.EncodingSortField(field=f'score', order='ascending', op=agg)), # no title, no label angle),
                alt.Y(y_val, scale=alt.Scale(zero=True)),
                alt.Color(f'{category}:N').legend(None),
            ).properties(
                width=200,
                height=100,
                title=f"How does {models[0]} perform across {category}?"
            )
        chart = chart.configure_title(fontSize=20, offset=5, orient='top', anchor='middle').configure_axis(
            labelFontSize=20,
            titleFontSize=20,
        ).configure_legend(
            labelFontSize=15,
            titleFontSize=15,
        )
    return chart

def update_widgets(domain, partition, category, query_type):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
    if not os.path.exists(data_path):
        print("here?")
        return [None] * 11
    df = pd.read_csv(data_path)
    max_k = len(df[category].unique()) if category and category != "task id" else len(df)

    widgets = []

    if query_type == "top k":
        # aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
        rank = gr.Radio(['top', 'bottom'], value='top', label=" ", interactive=True, visible=True)
        k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", interactive=True, visible=True)
        model = gr.Dropdown(MODELS, value=MODELS, label="of model(s)'", multiselect=True, interactive=True, visible=True)
        # model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate", interactive=True, visible=True)
        model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)

        baseline = gr.Dropdown(MODELS, value=None, label="baseline", visible=False)
        direction = gr.Radio(['above', 'below'], value='above', label=" ", visible=False)
        threshold = gr.Slider(0, 1, 0.0, label="threshold", visible=False)
        baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="baseline aggregate", visible=False)
        md1 = gr.Markdown(r"<h2>ranked by the </h2>")
        md2 = gr.Markdown(r"<h2>accuracy</h2>")
        md3 = gr.Markdown(r"")

    elif query_type == "threshold":
        
        # aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task aggregate", interactive=True, visible=True)
        # aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
        model = gr.Dropdown(MODELS, value=MODELS[0], label="of model(s)'", multiselect=True, interactive=True, visible=True)
        direction = gr.Radio(['above', 'below'], value='above', label=" ", interactive=True, visible=True)
        threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=True, visible=True)
        # model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate", interactive=True, visible=True)
        model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
        
        rank = gr.Radio(['top', 'bottom'], value='top', label=" ", visible=False)
        k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", visible=False)
        baseline = gr.Dropdown(MODELS, value=None, label="baseline", visible=False)
        baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="baseline aggregate", visible=False)
        md1 = gr.Markdown(r"<h2>where the</h2>")
        md2 = gr.Markdown(r"<h2>accuracy is</h2>")
        md3 = gr.Markdown(r"")

    elif query_type == "model comparison":
        
        model = gr.Dropdown(MODELS, value=MODELS[0], label="of model(s)' accuracy", multiselect=True, interactive=True, visible=True)
        baseline = gr.Dropdown(MODELS, value=None, label="of baseline(s)' accuracy", multiselect=True, interactive=True, visible=True)
        direction = gr.Radio(['above', 'below'], value='above', label=" ", interactive=True, visible=True)
        threshold = gr.Slider(0, 1, 0.0, label="threshold", interactive=True, visible=True)
        model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
        # baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate (over baselines)", interactive=True, visible=True)
        baseline_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
        
        # aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task aggregate", interactive=True, visible=False)
        rank = gr.Radio(['top', 'bottom'], value='top', label=" ", visible=False)
        k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", visible=False)
        md1 = gr.Markdown(r"<h2>where the difference between the </h2>")
        md2 = gr.Markdown(r"<h2>is </h2>")
        md3 = gr.Markdown(r"<h2>and the</h2>")

    elif query_type == "model debugging":
        model = gr.Dropdown(MODELS, value=MODELS[0], label="model's", multiselect=False, interactive=True, visible=True)

        # aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", visible=False)
        baseline = gr.Dropdown(MODELS, value=None, label="baseline", visible=False)
        direction = gr.Radio(['above', 'below'], value='above', label=" ", visible=False)
        threshold = gr.Slider(0, 1, 0.0, label="threshold", visible=False)
        rank = gr.Radio(['top', 'bottom'], value='top', label=" ", visible=False)
        k = gr.Slider(1, max_k, max_k // 2, step=1.0, label="k", visible=False)
        model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate (over models)", visible=False)
        baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="baseline aggregate", visible=False)
        md1 = gr.Markdown(r"<h2>where </h2>")
        md2 = gr.Markdown(r"<h2>mean accuracy is below its overall mean accuracy by one standard deviation</h2>")
        md3 = gr.Markdown(r"")
    else:
        widgets = [None] * 11
    widgets = [rank, k, direction, threshold, model, model_aggregate, baseline, baseline_aggregate, md1, md2, md3]

    return widgets
    
def select_tasks(domain, partition, category, query_type, task_agg, models, model_agg, rank, k, direction, threshold, baselines, baseline_agg):
    domain = domain2folder[domain]
    data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
    merged_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"
    
    if not os.path.exists(data_path) or not os.path.exists(merged_path):
        return gr.DataFrame(None)
    df = pd.read_csv(data_path)
    merged_df = pd.read_csv(merged_path)
    task_plan = pickle.load(open(f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl", 'rb'))
    task_plan.reset_index(inplace=True)
    if not category or category == "task id":
        category = 'index'
    
    if query_type == "top k":
        df = df[df['model'].isin(models)]
        df = df.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
        df = df.groupby([category])['score'].agg(model_agg).reset_index()
        df = df.sort_values(by='score', ascending=False)
        if rank == "bottom":
            df = df.iloc[-k:, :]
        else:
            df = df.iloc[:k, :]
    elif query_type == "threshold":
        df = df[df['model'].isin(models)]
        df = df.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
        df = df.groupby([category])['score'].agg(model_agg).reset_index()
        if direction == "below":
            df = df[df['score'] <= threshold]
        else:
            df = df[df['score'] >= threshold]
    elif query_type == "model comparison":
        # df = merged_df
        # df.reset_index(inplace=True)
        # df = df.groupby([category])[[model, baseline]].agg(task_agg).reset_index()
        # df = df[(df[model] - df[baseline] > threshold)]
        df_baseline = deepcopy(df)

        df = df[df['model'].isin(models)]
        df = df.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
        df = df.groupby([category])['score'].agg(model_agg).reset_index()
        model_str = ', '.join(models)
        exp_score_id = f'{model_agg}({model_str})' if len(models) > 1 else model_str
        df = df.sort_values(by=category)

        df_baseline = df_baseline[df_baseline['model'].isin(baselines)]
        df_baseline = df_baseline.groupby([category, 'model'])['score'].agg(task_agg).reset_index()
        df_baseline = df_baseline.groupby([category])['score'].agg(baseline_agg).reset_index()
        model_str = ', '.join(baselines)
        baseline_score_id = f'{baseline_agg}({model_str})' if len(baselines) > 1 else model_str
        df_baseline = df_baseline.sort_values(by=category)


        df.rename(columns={'score': exp_score_id}, inplace=True)
        df_baseline.rename(columns={'score': baseline_score_id}, inplace=True)
        df = pd.merge(df, df_baseline, on=category)
        df = df[(df[exp_score_id] - df[baseline_score_id] > threshold)]

    elif query_type == "model debugging":
        model = models
        print(models)
        avg_acc = merged_df[model].mean()
        std = merged_df[model].std()
        t = avg_acc - std
        df = df[df['model'] == model]
        df = df.groupby(['model', category])['score'].agg(task_agg).reset_index()
        df = df[df['score'] < t]
        df['mean'] = round(avg_acc, 4)
        df['std'] = round(std, 4)
    
    print(df.head())
    if category == 'index':
        task_attrs = list(df[category])
        selected_tasks = task_plan[task_plan[category].isin(task_attrs)]

        if len(selected_tasks) == 0:
            return gr.DataFrame(None, label="There is no such task.")

        if query_type == "model comparison" and (models and baselines):
            # selected_tasks[model] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][model].values[0], axis=1)
            # selected_tasks[baseline] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][baseline].values[0], axis=1)
            selected_tasks[exp_score_id] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][exp_score_id].values[0], axis=1)
            selected_tasks[baseline_score_id] = selected_tasks.apply(lambda row: df[df['index'] == row['index']][baseline_score_id].values[0], axis=1)
        else:
            selected_tasks['score'] = selected_tasks.apply(lambda row: df[df['index'] == row['index']]['score'].values[0], axis=1)
    
        print(selected_tasks.head())
        return gr.DataFrame(selected_tasks, label=f"There are {len(selected_tasks)} (out of {len(task_plan)}) tasks in total.")
    else:
        if len(df) == 0:
            return gr.DataFrame(None, label=f"There is no such {category}.")
        else:
            return gr.DataFrame(df, label=f"The total number of such {category} is {len(df)}.")


def find_patterns(selected_tasks, num_patterns, models, baselines, model_agg, baseline_agg):
    if len(selected_tasks) == 0:
        return gr.DataFrame(None)
    print(selected_tasks.head())
    if 'score' in selected_tasks:
        scores = selected_tasks['score']
    # elif model in selected_tasks:
    #     scores = selected_tasks[model]
    else:
        scores = None
    print(scores)

    model_str = ', '.join(models)
    exp_score_id = f'{model_agg}({model_str})' if len(models) > 1 else model_str
    if baselines:
        baseline_str = ', '.join(baselines)
        baseline_score_id = f'{baseline_agg}({baseline_str})' if len(baselines) > 1 else baseline_str
    
    tasks_only = selected_tasks
    all_score_cols = ['score', exp_score_id] 
    if baselines:
        all_score_cols += [baseline_score_id]
    for name in all_score_cols:
        if name in selected_tasks:
            tasks_only = tasks_only.drop(name, axis=1)
    results = find_frequent_patterns(k=num_patterns, df=tasks_only, scores=scores)
    records = []
    if scores is not None:
        patterns, scores = results[0], results[1]
        for pattern, score in zip(patterns, scores):
            pattern_str = ""
            for t in pattern[1]:
                col_name, col_val = t
                pattern_str += f"{col_name} = {col_val}, "
            
            record = {'pattern': pattern_str[:-2], 'count': pattern[0], 'score': score} #{model} 
            records.append(record)
    else:
        patterns = results
        for pattern in patterns:
            pattern_str = ""
            for t in pattern[1]:
                col_name, col_val = t
                pattern_str += f"{col_name} = {col_val}, "
            
            record = {'pattern': pattern_str[:-2], 'count': pattern[0]}
            records.append(record)

    df = pd.DataFrame.from_records(records)
    return gr.DataFrame(df)

def visualize_task_distribution(selected_tasks, col_name, model1, model2):
    if not col_name:
        return None
    task_plan_cnt = selected_tasks.groupby(col_name)['index'].count().reset_index()
    task_plan_cnt.rename(columns={'index': 'count'}, inplace=True)
    task_plan_cnt['frequency (%)'] = round(task_plan_cnt['count'] / len(selected_tasks) * 100, 2)
    print(task_plan_cnt.head())

    tooltips = [col_name, 'count', 'frequency (%)']
    base = alt.Chart(task_plan_cnt).encode(
        alt.Theta("count:Q").stack(True),
        alt.Color(f"{col_name}:N").legend(),
        tooltip=tooltips
    )
    pie = base.mark_arc(outerRadius=120)
            
    return pie

def plot_performance_for_selected_tasks(domain, partition, df, query_type, models, baselines, select_category, vis_category, task_agg, model_agg, baseline_agg, rank, direction, threshold):
    domain = domain2folder[domain]
    task_agg = "mean"
    data_path = f"{BASE_DIR}/{domain}/{partition}/expanded_data.csv"
    mereged_data_path = f"{BASE_DIR}/{domain}/{partition}/merged_data.csv"

    if not os.path.exists(data_path) or not os.path.exists(mereged_data_path) or len(df) == 0:
        return None
    
    select_tasks = select_category == "task id" and vis_category
    if select_tasks: # select tasks
        y_val = f'{task_agg}(score):Q'
    else: # select task categories
        y_val = f'score:Q'

    if select_category == "task id":
        select_category = "index"
    print(df.head())
    if query_type == "model comparison":
        # re-format the data for plotting
        model_str = ', '.join(models)
        exp_score_id = f'{model_agg}({model_str})' if len(models) > 1 else model_str
        baseline_str = ', '.join(baselines)
        baseline_score_id = f'{baseline_agg}({baseline_str})' if len(baselines) > 1 else baseline_str
        # other_cols = list(df.columns)
        # other_cols.remove(select_category)
        print(exp_score_id, baseline_score_id)
        df = df.melt(id_vars=[select_category], value_vars=[exp_score_id, baseline_score_id])
        df.rename(columns={'variable': 'model', 'value': 'score'}, inplace=True)
        print(df.head())

        if select_tasks:
            merged_df = pd.read_csv(mereged_data_path)
            df[vis_category] = df.apply(lambda row: merged_df[merged_df.index == row['index']][vis_category].values[0], axis=1)

        num_columns = len(df['model'].unique()) * len(df[f'{vis_category}'].unique())
        chart = alt.Chart(df).mark_bar().encode(
            alt.X('model:N', 
                sort=alt.EncodingSortField(field=f'score', order='descending', op=task_agg),
                axis=alt.Axis(labels=False, tickSize=0, title=None)),
            alt.Y(y_val, scale=alt.Scale(zero=True), title="accuracy"),
            alt.Color('model:N').legend(),
            alt.Column(f'{vis_category}:N', header=alt.Header(titleOrient='bottom', labelOrient='bottom', labelFontSize=20, titleFontSize=20,))
        ).properties(
            width=num_columns * 30,
            height=200,
            title=f"How do models perform by {vis_category}?"
        )
        print(num_columns * 50)
    else:
        if query_type == "model debugging":
            y_title = "accuracy"
            plot_title = f"{models} performs worse than its (mean - std) on these {vis_category}s"
            models = [models]
        else:
            model_str = ', '.join(models) 
            y_title = f"{model_agg} accuracy" if len(models) > 0 else "accuracy"
            suffix = f"on these tasks (by {vis_category})" if select_category == "index" else f"on these {vis_category}s"
            if query_type == "top k":
                plot_title = f"The {model_agg} accuracy of {model_str} is the {'highest' if rank == 'top' else 'lowest'} " + suffix
            elif query_type == "threshold":
                plot_title = f"The {model_agg} accuracy of {model_str} is {direction} {threshold} " + suffix

        if select_tasks:
            expand_df = pd.read_csv(data_path)
            task_ids = list(df['index'].unique())
            
            # all_models = (models + baselines) if baselines else models
            df = expand_df[(expand_df['model'].isin(models)) & (expand_df['task id'].isin(task_ids))] 
        
        num_columns = len(df[f'{vis_category}'].unique())
        chart = alt.Chart(df).mark_bar().encode(
            alt.X(f'{vis_category}:N', sort=alt.EncodingSortField(field=f'score', order='ascending', op=task_agg), axis=alt.Axis(labelAngle=-45)), # no title, no label angle),
            alt.Y(y_val, scale=alt.Scale(zero=True), title=y_title),
            alt.Color(f'{vis_category}:N').legend(None),
        ).properties(
            width=num_columns * 30,
            height=200,
            title=plot_title
        )

    chart = chart.configure_title(fontSize=20, offset=5, orient='top', anchor='middle').configure_axis(
            labelFontSize=20,
            titleFontSize=20,
        ).configure_legend(
            labelFontSize=20,
            titleFontSize=20,
            labelLimit=200,
        )
    return chart

def sync_vis_category(domain, partition, category):
    domain = domain2folder[domain]
    if category and category != "task id":
        return [gr.Dropdown([category], value=category, label="by task metadata", interactive=False), gr.Dropdown([category], value=category, label="by task metadata", interactive=False)]
    else:
        data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
        if os.path.exists(data_path):
            data = pickle.load(open(data_path, 'rb'))
            categories = list(data.columns)
            return [gr.Dropdown(categories, value=categories[0], label="by task metadata", interactive=True), gr.Dropdown(categories, value=categories[0], label="by task metadata", interactive=True)]
        else:
            return [None, None]

def hide_fpm_and_dist_components(domain, partition, category):
    domain = domain2folder[domain]
    print(category)
    if category and category != "task id":
        num_patterns = gr.Slider(1, 100, 50, step=1.0, label="number of patterns", visible=False)
        btn_pattern = gr.Button(value="Find patterns among tasks", visible=False)
            
        table = gr.DataFrame({}, height=250, visible=False)     
        dist_chart = Plot(visible=False)
        
        col_name = gr.Dropdown([], value=None, label="by task metadata", visible=False)
        btn_dist = gr.Button(value="Visualize task distribution", visible=False)
    else:
        data_path = f"{BASE_DIR}/{domain}/{partition}/task_plan.pkl"
        if os.path.exists(data_path):
            data = pickle.load(open(data_path, 'rb'))
            categories = list(data.columns)
            col_name = gr.Dropdown(categories, value=categories[0], label="by task metadata", interactive=True, visible=True)
        else:
            col_name = gr.Dropdown([], value=None, label="by task metadata", interactive=True, visible=True)
        
        num_patterns = gr.Slider(1, 100, 50, step=1.0, label="number of patterns", interactive=True, visible=True)
        btn_pattern = gr.Button(value="Find patterns among tasks", interactive=True, visible=True)
            
        table = gr.DataFrame({}, height=250, interactive=True, visible=True)     
        dist_chart = Plot(visible=True)
        
        btn_dist = gr.Button(value="Visualize task distribution", interactive=True, visible=True)
    return [num_patterns, btn_pattern, table, col_name, btn_dist, dist_chart]



# domains = list_directories(BASE_DIR)
theme = gr.Theme.from_hub('sudeepshouche/minimalist')
theme.font = [gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"] # gr.themes.GoogleFont("Source Sans Pro") # [gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"]
theme.text_size = gr.themes.sizes.text_lg
# theme = theme.set(font=)

demo = gr.Blocks(theme=theme, title="TaskMeAnything-UI") #
with demo:
    with gr.Row():
        with gr.Column(scale=1):
                gr.Markdown(
                    r""
                )
        with gr.Column(scale=1):
            gr.Markdown(
                    r"<h1>Welcome to TaskMeAnything-UI! </h1>"
                )
        with gr.Column(scale=1):
            gr.Markdown(
                    r""
                )
        
    with gr.Tab("๐Ÿ“Š Overview"):
        gr.Markdown(
            r"<h2>๐Ÿ“Š Visualize the overall task distribution and model performance </h2>"
        )
        
        with gr.Row():
            domain = gr.Radio(domains, label="scenario", scale=2)
            partition = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
            # domain.change(fn=update_partition, inputs=domain, outputs=partition)
            

        gr.Markdown(
            r"<h2>Overall task metadata distribution</h2>"
        )

        with gr.Row():
            category = gr.Dropdown([], value=None, label="task metadata")
            partition.change(fn=update_category, inputs=[domain, partition], outputs=category)
        with gr.Row():
            output = Plot()
        with gr.Row():
            btn = gr.Button(value="Plot")
            btn.click(plot_task_distribution, [domain, partition, category], output)

        gr.Markdown(
            r"<h2>Models' overall performance by task metadata</h2>"
        )
        with gr.Row():
            with gr.Column(scale=2):
                models = gr.CheckboxGroup(MODELS, label="model(s)", value=MODELS)
            with gr.Column(scale=1):
                aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="aggregate models' accuracy by")
        with gr.Row():
            # with gr.Column(scale=1):
                category1 = gr.Dropdown([], value=None, label="task metadata", interactive=True)
                category2 = gr.Dropdown([], value=None, label="Optional: second task metadata", interactive=True)
                partition.change(fn=update_category, inputs=[domain, partition], outputs=category1)
                category1.change(fn=update_category2, inputs=[domain, partition, category1], outputs=category2)
        domain.change(fn=update_partition_and_models, inputs=domain, outputs=[partition, models])
        with gr.Row():
            output = Plot()
        with gr.Row():
            btn = gr.Button(value="Plot")
            btn.click(plot_all, [domain, partition, models, category1, category2, aggregate], output)
        # gr.Examples(["hello", "bonjour", "merhaba"], input_textbox)


    with gr.Tab("โœจ Embedding"):
        gr.Markdown(
            r"<h2>โœจ Visualize the tasks' embeddings in the 2D space </h2>"
        )
        with gr.Row():
            domain2 = gr.Radio(domains, label="scenario", scale=2)
            # domain = gr.Dropdown(domains, value=domains[0], label="scenario")
            partition2 = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
            category2 = gr.Dropdown([], value=None, label="colored by task metadata", scale=1)
            domain2.change(fn=update_partition, inputs=domain2, outputs=partition2)
            partition2.change(fn=update_category, inputs=[domain2, partition2], outputs=category2)
        
        with gr.Row():
            output2 = Plot()
        with gr.Row():
            btn = gr.Button(value="Run")
            btn.click(plot_embedding, [domain2, partition2, category2], output2)

            
    with gr.Tab("โ“ Query"):
        gr.Markdown(
            r"<h2>โ“ Find out the answers to your queries by finding and visualizing the relevant tasks and models' performance </h2>"
        )
        with gr.Row(equal_height=True):
            domain = gr.Radio(domains, label="scenario", scale=2)
            partition = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
        with gr.Row():
            query1 = "top k"
            query2 = "threshold"
            query3 = "model debugging"
            query4 = "model comparison"
            query_type = gr.Radio([query1, query2, query3, query4], value="top k", label=r"query type")
        with gr.Row():
            with gr.Accordion("See more details about the query type"):
                gr.Markdown(
                r"<ul><li>Top k: Find the k tasks or task metadata that the model(s) perform the best or worst on</li><li>Threshold: Find the tasks or task metadata where the model(s)' performance is greater or lower than a given threshold t</li><li>Model debugging: Find the tasks or task metadata where a model performs significantly worse than its average performance (by one standard deviation)</li><li>Model comparison: Find the tasks or task metadata where some model(s) perform better or worse than the baseline(s) by a given threshold t</li></ul>"
            )
        
        with gr.Row():
            gr.Markdown(r"<h2>Help me find the</h2>")
        with gr.Row(equal_height=True):
            # with gr.Column(scale=1):
            rank = gr.Radio(['top', 'bottom'], value='top', label=" ", interactive=True, visible=True)
            # with gr.Column(scale=2):
            k = gr.Slider(1, 10, 5 // 2, step=1.0, label="k", interactive=True, visible=True)
            # with gr.Column(scale=2):
            category = gr.Dropdown([], value=None, label="tasks / task metadata", interactive=True)
            
        with gr.Row():
            md1 = gr.Markdown(r"<h2>ranked by the </h2>")

        with gr.Row(equal_height=True):
            # with gr.Column(scale=1, min_width=100):
                # model_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
            model_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True, scale=1)
            # with gr.Column(scale=8):
            model = gr.Dropdown(MODELS, value=MODELS, label="of model(s)", multiselect=True, interactive=True, visible=True, scale=2)
            # with gr.Column(scale=1, min_width=100):
            # aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True, scale=1)
        with gr.Row():
            md3 = gr.Markdown(r"")
        with gr.Row(equal_height=True):
            baseline_aggregate = gr.Dropdown(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=False, scale=1)
            baseline = gr.Dropdown(MODELS, value=None, label="of baseline(s)'", visible=False, scale=2)
            # aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label=" ", interactive=True, visible=True)
            # with gr.Column(scale=1, min_width=50):
        with gr.Row():
            md2 = gr.Markdown(r"<h2>accuracy</h2>")
        
        with gr.Row():
            # baseline_aggregate = gr.Radio(['mean', 'median', 'min', 'max'], value="mean", label="task category aggregate (over baselines)", visible=False)
            direction = gr.Radio(['above', 'below'], value='above', label=" ", visible=False)
            threshold = gr.Slider(0, 1, 0.0, label="threshold", visible=False)
            
        widgets = [rank, k, direction, threshold, model, model_aggregate, baseline, baseline_aggregate, md1, md2, md3]
        partition.change(fn=update_category, inputs=[domain, partition], outputs=category)
        query_type.change(update_widgets, [domain, partition, category, query_type], widgets)
        domain.change(fn=update_partition_and_models_and_baselines, inputs=domain, outputs=[partition, model, baseline])
        with gr.Row():
            df = gr.DataFrame({}, height=200)
        btn = gr.Button(value="Find tasks / task metadata")
        btn.click(select_tasks, [domain, partition, category, query_type, aggregate, model, model_aggregate, rank, k, direction, threshold, baseline, baseline_aggregate], df)

        with gr.Row():
            plot = Plot()
        with gr.Row():
            col_name2 = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
            partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name2)
            btn_plot = gr.Button(value="Plot model performance", interactive=True)
            btn_plot.click(plot_performance_for_selected_tasks, [domain, partition, df, query_type, model, baseline, category, col_name2, aggregate, model_aggregate, baseline_aggregate, rank, direction, threshold], plot)

        with gr.Row():
            dist_chart = Plot()
        with gr.Row():
            col_name = gr.Dropdown([], value=None, label="by task metadata", interactive=True)
            partition.change(fn=update_category, inputs=[domain, partition], outputs=col_name)
            btn_dist = gr.Button(value="Visualize task distribution", interactive=True)
            btn_dist.click(visualize_task_distribution, [df, col_name, model, baseline], dist_chart)

        with gr.Row():
            table = gr.DataFrame({}, height=250)
        with gr.Row():
            num_patterns = gr.Slider(1, 100, 50, step=1.0, label="number of patterns")
            btn_pattern = gr.Button(value="Find patterns among tasks")
            btn_pattern.click(find_patterns, [df, num_patterns, model, baseline], table)
            
        category.change(fn=hide_fpm_and_dist_components, inputs=[domain, partition, category], outputs=[num_patterns, btn_pattern, table, col_name, btn_dist, dist_chart])
        category.change(fn=sync_vis_category, inputs=[domain, partition, category], outputs=[col_name, col_name2])
        category.change(fn=update_k, inputs=[domain, partition, category], outputs=k)

    
    with gr.Tab("๐Ÿ˜ฎ Surprisingness"):
        gr.Markdown(r"<h2>๐Ÿ˜ฎ Find out the tasks a model is surprisingly good or bad at compared to similar tasks</h2>")
        with gr.Row():
            domain3 = gr.Radio(domains, label="scenario", scale=2)
            partition3 = gr.Dropdown([], value=None, label="task space of the following task generator", scale=1)
        with gr.Row():
            model3 = gr.Dropdown(MODELS, value=MODELS[0], label="model", interactive=True, visible=True)
            k3 = gr.Slider(1, 100, 50, step=1.0, label="number of surprising tasks", interactive=True)
            num_neighbors = gr.Slider(1, 100, 50, step=1.0, label="number of neighbors", interactive=True)
            rank3 = gr.Radio(['top', 'bottom'], value='top', label=" ", interactive=True, visible=True)
        domain3.change(fn=update_partition_and_models, inputs=domain3, outputs=[partition3, model3])
        # partition3.change(fn=update_k, inputs=[domain3, partition3], outputs=k3)
        with gr.Row():
            output3 = Plot()
        with gr.Row():
            btn = gr.Button(value="Plot")
            btn.click(plot_surprisingness, [domain3, partition3, model3, rank3, k3, num_neighbors], output3)

            
# if __name__ == "__main__":
demo.launch(share=True)