File size: 4,261 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# --------------------------------------------------------
# Octree-based Sparse Convolutional Neural Networks
# Copyright (c) 2022 Peng-Shuai Wang <wangps@hotmail.com>
# Licensed under The MIT License [see LICENSE for details]
# Written by Peng-Shuai Wang
# --------------------------------------------------------

import torch
from typing import Optional, Union


class KeyLUT:
    def __init__(self):
        r256 = torch.arange(256, dtype=torch.int64)
        r512 = torch.arange(512, dtype=torch.int64)
        zero = torch.zeros(256, dtype=torch.int64)
        device = torch.device("cpu")

        self._encode = {
            device: (
                self.xyz2key(r256, zero, zero, 8),
                self.xyz2key(zero, r256, zero, 8),
                self.xyz2key(zero, zero, r256, 8),
            )
        }
        self._decode = {device: self.key2xyz(r512, 9)}

    def encode_lut(self, device=torch.device("cpu")):
        if device not in self._encode:
            cpu = torch.device("cpu")
            self._encode[device] = tuple(e.to(device) for e in self._encode[cpu])
        return self._encode[device]

    def decode_lut(self, device=torch.device("cpu")):
        if device not in self._decode:
            cpu = torch.device("cpu")
            self._decode[device] = tuple(e.to(device) for e in self._decode[cpu])
        return self._decode[device]

    def xyz2key(self, x, y, z, depth):
        key = torch.zeros_like(x)
        for i in range(depth):
            mask = 1 << i
            key = (
                key
                | ((x & mask) << (2 * i + 2))
                | ((y & mask) << (2 * i + 1))
                | ((z & mask) << (2 * i + 0))
            )
        return key

    def key2xyz(self, key, depth):
        x = torch.zeros_like(key)
        y = torch.zeros_like(key)
        z = torch.zeros_like(key)
        for i in range(depth):
            x = x | ((key & (1 << (3 * i + 2))) >> (2 * i + 2))
            y = y | ((key & (1 << (3 * i + 1))) >> (2 * i + 1))
            z = z | ((key & (1 << (3 * i + 0))) >> (2 * i + 0))
        return x, y, z


_key_lut = KeyLUT()


def xyz2key(

    x: torch.Tensor,

    y: torch.Tensor,

    z: torch.Tensor,

    b: Optional[Union[torch.Tensor, int]] = None,

    depth: int = 16,

):
    r"""Encodes :attr:`x`, :attr:`y`, :attr:`z` coordinates to the shuffled keys

    based on pre-computed look up tables. The speed of this function is much

    faster than the method based on for-loop.



    Args:

      x (torch.Tensor): The x coordinate.

      y (torch.Tensor): The y coordinate.

      z (torch.Tensor): The z coordinate.

      b (torch.Tensor or int): The batch index of the coordinates, and should be

          smaller than 32768. If :attr:`b` is :obj:`torch.Tensor`, the size of

          :attr:`b` must be the same as :attr:`x`, :attr:`y`, and :attr:`z`.

      depth (int): The depth of the shuffled key, and must be smaller than 17 (< 17).

    """

    EX, EY, EZ = _key_lut.encode_lut(x.device)
    x, y, z = x.long(), y.long(), z.long()

    mask = 255 if depth > 8 else (1 << depth) - 1
    key = EX[x & mask] | EY[y & mask] | EZ[z & mask]
    if depth > 8:
        mask = (1 << (depth - 8)) - 1
        key16 = EX[(x >> 8) & mask] | EY[(y >> 8) & mask] | EZ[(z >> 8) & mask]
        key = key16 << 24 | key

    if b is not None:
        b = b.long()
        key = b << 48 | key

    return key


def key2xyz(key: torch.Tensor, depth: int = 16):
    r"""Decodes the shuffled key to :attr:`x`, :attr:`y`, :attr:`z` coordinates

    and the batch index based on pre-computed look up tables.



    Args:

      key (torch.Tensor): The shuffled key.

      depth (int): The depth of the shuffled key, and must be smaller than 17 (< 17).

    """

    DX, DY, DZ = _key_lut.decode_lut(key.device)
    x, y, z = torch.zeros_like(key), torch.zeros_like(key), torch.zeros_like(key)

    b = key >> 48
    key = key & ((1 << 48) - 1)

    n = (depth + 2) // 3
    for i in range(n):
        k = key >> (i * 9) & 511
        x = x | (DX[k] << (i * 3))
        y = y | (DY[k] << (i * 3))
        z = z | (DZ[k] << (i * 3))

    return x, y, z, b