File size: 39,417 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
"""

Point Transformer - V3 Mode1

Pointcept detached version



Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com)

Please cite our work if the code is helpful to you.

"""

import sys
from functools import partial
from addict import Dict
import math
import torch
import torch.nn as nn
import spconv.pytorch as spconv
import torch_scatter
from timm.models.layers import DropPath
from collections import OrderedDict
import numpy as np
import torch.nn.functional as F
try:
    import flash_attn
except ImportError:
    flash_attn = None
from model.serialization import encode
from huggingface_hub import PyTorchModelHubMixin

@torch.inference_mode()
def offset2bincount(offset):
    return torch.diff(
        offset, prepend=torch.tensor([0], device=offset.device, dtype=torch.long)
    )


@torch.inference_mode()
def offset2batch(offset):
    bincount = offset2bincount(offset)
    return torch.arange(
        len(bincount), device=offset.device, dtype=torch.long
    ).repeat_interleave(bincount)


@torch.inference_mode()
def batch2offset(batch):
    return torch.cumsum(batch.bincount(), dim=0).long()


class Point(Dict):
    """

    Point Structure of Pointcept



    A Point (point cloud) in Pointcept is a dictionary that contains various properties of

    a batched point cloud. The property with the following names have a specific definition

    as follows:



    - "coord": original coordinate of point cloud;

    - "grid_coord": grid coordinate for specific grid size (related to GridSampling);

    Point also support the following optional attributes:

    - "offset": if not exist, initialized as batch size is 1;

    - "batch": if not exist, initialized as batch size is 1;

    - "feat": feature of point cloud, default input of model;

    - "grid_size": Grid size of point cloud (related to GridSampling);

    (related to Serialization)

    - "serialized_depth": depth of serialization, 2 ** depth * grid_size describe the maximum of point cloud range;

    - "serialized_code": a list of serialization codes;

    - "serialized_order": a list of serialization order determined by code;

    - "serialized_inverse": a list of inverse mapping determined by code;

    (related to Sparsify: SpConv)

    - "sparse_shape": Sparse shape for Sparse Conv Tensor;

    - "sparse_conv_feat": SparseConvTensor init with information provide by Point;

    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # If one of "offset" or "batch" do not exist, generate by the existing one
        if "batch" not in self.keys() and "offset" in self.keys():
            self["batch"] = offset2batch(self.offset)
        elif "offset" not in self.keys() and "batch" in self.keys():
            self["offset"] = batch2offset(self.batch)

    def serialization(self, order="z", depth=None, shuffle_orders=False):
        """

        Point Cloud Serialization



        relay on ["grid_coord" or "coord" + "grid_size", "batch", "feat"]

        """
        assert "batch" in self.keys()
        if "grid_coord" not in self.keys():
            # if you don't want to operate GridSampling in data augmentation,
            # please add the following augmentation into your pipline:
            # dict(type="Copy", keys_dict={"grid_size": 0.01}),
            # (adjust `grid_size` to what your want)
            assert {"grid_size", "coord"}.issubset(self.keys())
            self["grid_coord"] = torch.div(
                self.coord - self.coord.min(0)[0], self.grid_size, rounding_mode="trunc"
            ).int()

        if depth is None:
            # Adaptive measure the depth of serialization cube (length = 2 ^ depth)
            depth = int(self.grid_coord.max()).bit_length()
        self["serialized_depth"] = depth
        # Maximum bit length for serialization code is 63 (int64)
        assert depth * 3 + len(self.offset).bit_length() <= 63
        # Here we follow OCNN and set the depth limitation to 16 (48bit) for the point position.
        # Although depth is limited to less than 16, we can encode a 655.36^3 (2^16 * 0.01) meter^3
        # cube with a grid size of 0.01 meter. We consider it is enough for the current stage.
        # We can unlock the limitation by optimizing the z-order encoding function if necessary.
        assert depth <= 16

        # The serialization codes are arranged as following structures:
        # [Order1 ([n]),
        #  Order2 ([n]),
        #   ...
        #  OrderN ([n])] (k, n)
        code = [
            encode(self.grid_coord, self.batch, depth, order=order_) for order_ in order
        ]
        code = torch.stack(code)
        order = torch.argsort(code)
        inverse = torch.zeros_like(order).scatter_(
            dim=1,
            index=order,
            src=torch.arange(0, code.shape[1], device=order.device).repeat(
                code.shape[0], 1
            ),
        )

        if shuffle_orders:
            perm = torch.randperm(code.shape[0])
            code = code[perm]
            order = order[perm]
            inverse = inverse[perm]

        self["serialized_code"] = code
        self["serialized_order"] = order
        self["serialized_inverse"] = inverse

    def sparsify(self, pad=96):
        """

        Point Cloud Serialization



        Point cloud is sparse, here we use "sparsify" to specifically refer to

        preparing "spconv.SparseConvTensor" for SpConv.



        relay on ["grid_coord" or "coord" + "grid_size", "batch", "feat"]



        pad: padding sparse for sparse shape.

        """
        assert {"feat", "batch"}.issubset(self.keys())
        if "grid_coord" not in self.keys():
            # if you don't want to operate GridSampling in data augmentation,
            # please add the following augmentation into your pipline:
            # dict(type="Copy", keys_dict={"grid_size": 0.01}),
            # (adjust `grid_size` to what your want)
            assert {"grid_size", "coord"}.issubset(self.keys())
            self["grid_coord"] = torch.div(
                self.coord - self.coord.min(0)[0], self.grid_size, rounding_mode="trunc"
            ).int()
        if "sparse_shape" in self.keys():
            sparse_shape = self.sparse_shape
        else:
            sparse_shape = torch.add(
                torch.max(self.grid_coord, dim=0).values, pad
            ).tolist()
        sparse_conv_feat = spconv.SparseConvTensor(
            features=self.feat,
            indices=torch.cat(
                [self.batch.unsqueeze(-1).int(), self.grid_coord.int()], dim=1
            ).contiguous(),
            spatial_shape=sparse_shape,
            batch_size=self.batch[-1].tolist() + 1,
        )
        self["sparse_shape"] = sparse_shape
        self["sparse_conv_feat"] = sparse_conv_feat


class PointModule(nn.Module):
    r"""PointModule

    placeholder, all module subclass from this will take Point in PointSequential.

    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)


class PointSequential(PointModule):
    r"""A sequential container.

    Modules will be added to it in the order they are passed in the constructor.

    Alternatively, an ordered dict of modules can also be passed in.

    """

    def __init__(self, *args, **kwargs):
        super().__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict):
            for key, module in args[0].items():
                self.add_module(key, module)
        else:
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)
        for name, module in kwargs.items():
            if sys.version_info < (3, 6):
                raise ValueError("kwargs only supported in py36+")
            if name in self._modules:
                raise ValueError("name exists.")
            self.add_module(name, module)

    def __getitem__(self, idx):
        if not (-len(self) <= idx < len(self)):
            raise IndexError("index {} is out of range".format(idx))
        if idx < 0:
            idx += len(self)
        it = iter(self._modules.values())
        for i in range(idx):
            next(it)
        return next(it)

    def __len__(self):
        return len(self._modules)

    def add(self, module, name=None):
        if name is None:
            name = str(len(self._modules))
            if name in self._modules:
                raise KeyError("name exists")
        self.add_module(name, module)

    def forward(self, input):
        for k, module in self._modules.items():
            # Point module
            if isinstance(module, PointModule):
                input = module(input)
            # Spconv module
            elif spconv.modules.is_spconv_module(module):
                if isinstance(input, Point):
                    input.sparse_conv_feat = module(input.sparse_conv_feat)
                    input.feat = input.sparse_conv_feat.features
                else:
                    input = module(input)
            # PyTorch module
            else:
                if isinstance(input, Point):
                    input.feat = module(input.feat)
                    if "sparse_conv_feat" in input.keys():
                        input.sparse_conv_feat = input.sparse_conv_feat.replace_feature(
                            input.feat
                        )
                elif isinstance(input, spconv.SparseConvTensor):
                    if input.indices.shape[0] != 0:
                        input = input.replace_feature(module(input.features))
                else:
                    input = module(input)
        return input


class PDNorm(PointModule):
    def __init__(

        self,

        num_features,

        norm_layer,

        context_channels=256,

        conditions=("ScanNet", "S3DIS", "Structured3D"),

        decouple=True,

        adaptive=False,

    ):
        super().__init__()
        self.conditions = conditions
        self.decouple = decouple
        self.adaptive = adaptive
        if self.decouple:
            self.norm = nn.ModuleList([norm_layer(num_features) for _ in conditions])
        else:
            self.norm = norm_layer
        if self.adaptive:
            self.modulation = nn.Sequential(
                nn.SiLU(), nn.Linear(context_channels, 2 * num_features, bias=True)
            )

    def forward(self, point):
        assert {"feat", "condition"}.issubset(point.keys())
        if isinstance(point.condition, str):
            condition = point.condition
        else:
            condition = point.condition[0]
        if self.decouple:
            assert condition in self.conditions
            norm = self.norm[self.conditions.index(condition)]
        else:
            norm = self.norm
        point.feat = norm(point.feat)
        if self.adaptive:
            assert "context" in point.keys()
            shift, scale = self.modulation(point.context).chunk(2, dim=1)
            point.feat = point.feat * (1.0 + scale) + shift
        return point


class RPE(torch.nn.Module):
    def __init__(self, patch_size, num_heads):
        super().__init__()
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.pos_bnd = int((4 * patch_size) ** (1 / 3) * 2)
        self.rpe_num = 2 * self.pos_bnd + 1
        self.rpe_table = torch.nn.Parameter(torch.zeros(3 * self.rpe_num, num_heads))
        torch.nn.init.trunc_normal_(self.rpe_table, std=0.02)

    def forward(self, coord):
        idx = (
            coord.clamp(-self.pos_bnd, self.pos_bnd)  # clamp into bnd
            + self.pos_bnd  # relative position to positive index
            + torch.arange(3, device=coord.device) * self.rpe_num  # x, y, z stride
        )
        out = self.rpe_table.index_select(0, idx.reshape(-1))
        out = out.view(idx.shape + (-1,)).sum(3)
        out = out.permute(0, 3, 1, 2)  # (N, K, K, H) -> (N, H, K, K)
        return out


class SerializedAttention(PointModule):
    def __init__(

        self,

        channels,

        num_heads,

        patch_size,

        qkv_bias=True,

        qk_scale=None,

        attn_drop=0.0,

        proj_drop=0.0,

        order_index=0,

        enable_rpe=False,

        enable_flash=True,

        upcast_attention=True,

        upcast_softmax=True,

    ):
        super().__init__()
        assert channels % num_heads == 0
        self.channels = channels
        self.num_heads = num_heads
        self.scale = qk_scale or (channels // num_heads) ** -0.5
        self.order_index = order_index
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
        self.enable_rpe = enable_rpe
        self.enable_flash = enable_flash
        if enable_flash:
            assert (
                enable_rpe is False
            ), "Set enable_rpe to False when enable Flash Attention"
            assert (
                upcast_attention is False
            ), "Set upcast_attention to False when enable Flash Attention"
            assert (
                upcast_softmax is False
            ), "Set upcast_softmax to False when enable Flash Attention"
            #assert flash_attn is not None, "Make sure flash_attn is installed."
            self.patch_size = patch_size
            self.attn_drop = attn_drop
        else:
            # when disable flash attention, we still don't want to use mask
            # consequently, patch size will auto set to the
            # min number of patch_size_max and number of points
            self.patch_size_max = patch_size
            self.patch_size = 0
            self.attn_drop = torch.nn.Dropout(attn_drop)

        self.qkv = torch.nn.Linear(channels, channels * 3, bias=qkv_bias)
        self.proj = torch.nn.Linear(channels, channels)
        self.proj_drop = torch.nn.Dropout(proj_drop)
        self.softmax = torch.nn.Softmax(dim=-1)
        self.rpe = RPE(patch_size, num_heads) if self.enable_rpe else None

    @torch.no_grad()
    def get_rel_pos(self, point, order):
        K = self.patch_size
        rel_pos_key = f"rel_pos_{self.order_index}"
        if rel_pos_key not in point.keys():
            grid_coord = point.grid_coord[order]
            grid_coord = grid_coord.reshape(-1, K, 3)
            point[rel_pos_key] = grid_coord.unsqueeze(2) - grid_coord.unsqueeze(1)
        return point[rel_pos_key]

    @torch.no_grad()
    def get_padding_and_inverse(self, point):
        pad_key = "pad"
        unpad_key = "unpad"
        cu_seqlens_key = "cu_seqlens_key"
        if (
            pad_key not in point.keys()
            or unpad_key not in point.keys()
            or cu_seqlens_key not in point.keys()
        ):
            offset = point.offset
            bincount = offset2bincount(offset)
            bincount_pad = (
                torch.div(
                    bincount + self.patch_size - 1,
                    self.patch_size,
                    rounding_mode="trunc",
                )
                * self.patch_size
            )
            # only pad point when num of points larger than patch_size
            mask_pad = bincount > self.patch_size
            bincount_pad = ~mask_pad * bincount + mask_pad * bincount_pad
            _offset = nn.functional.pad(offset, (1, 0))
            _offset_pad = nn.functional.pad(torch.cumsum(bincount_pad, dim=0), (1, 0))
            pad = torch.arange(_offset_pad[-1], device=offset.device)
            unpad = torch.arange(_offset[-1], device=offset.device)
            cu_seqlens = []
            for i in range(len(offset)):
                unpad[_offset[i] : _offset[i + 1]] += _offset_pad[i] - _offset[i]
                if bincount[i] != bincount_pad[i]:
                    pad[
                        _offset_pad[i + 1]
                        - self.patch_size
                        + (bincount[i] % self.patch_size) : _offset_pad[i + 1]
                    ] = pad[
                        _offset_pad[i + 1]
                        - 2 * self.patch_size
                        + (bincount[i] % self.patch_size) : _offset_pad[i + 1]
                        - self.patch_size
                    ]
                pad[_offset_pad[i] : _offset_pad[i + 1]] -= _offset_pad[i] - _offset[i]
                cu_seqlens.append(
                    torch.arange(
                        _offset_pad[i],
                        _offset_pad[i + 1],
                        step=self.patch_size,
                        dtype=torch.int32,
                        device=offset.device,
                    )
                )
            point[pad_key] = pad
            point[unpad_key] = unpad
            point[cu_seqlens_key] = nn.functional.pad(
                torch.concat(cu_seqlens), (0, 1), value=_offset_pad[-1]
            )
        return point[pad_key], point[unpad_key], point[cu_seqlens_key]

    def forward(self, point):
        if not self.enable_flash:
            self.patch_size = min(
                offset2bincount(point.offset).min().tolist(), self.patch_size_max
            )

        H = self.num_heads
        K = self.patch_size
        C = self.channels

        pad, unpad, cu_seqlens = self.get_padding_and_inverse(point)

        order = point.serialized_order[self.order_index][pad]
        inverse = unpad[point.serialized_inverse[self.order_index]]

        # padding and reshape feat and batch for serialized point patch
        qkv = self.qkv(point.feat)[order]

        if not self.enable_flash:
            # encode and reshape qkv: (N', K, 3, H, C') => (3, N', H, K, C')
            q, k, v = (
                qkv.reshape(-1, K, 3, H, C // H).permute(2, 0, 3, 1, 4).unbind(dim=0)
            )
            # attn
            if self.upcast_attention:
                q = q.float()
                k = k.float()
            attn = (q * self.scale) @ k.transpose(-2, -1)  # (N', H, K, K)
            if self.enable_rpe:
                attn = attn + self.rpe(self.get_rel_pos(point, order))
            if self.upcast_softmax:
                attn = attn.float()
            attn = self.softmax(attn)
            attn = self.attn_drop(attn).to(qkv.dtype)
            feat = (attn @ v).transpose(1, 2).reshape(-1, C)
        else:
            feat = flash_attn.flash_attn_varlen_qkvpacked_func(
                qkv.half().reshape(-1, 3, H, C // H),
                cu_seqlens,
                max_seqlen=self.patch_size,
                dropout_p=self.attn_drop if self.training else 0,
                softmax_scale=self.scale,
            ).reshape(-1, C)
            feat = feat.to(qkv.dtype)
        feat = feat[inverse]

        # ffn
        feat = self.proj(feat)
        feat = self.proj_drop(feat)
        point.feat = feat
        return point


class MLP(nn.Module):
    def __init__(

        self,

        in_channels,

        hidden_channels=None,

        out_channels=None,

        act_layer=nn.GELU,

        drop=0.0,

    ):
        super().__init__()
        out_channels = out_channels or in_channels
        hidden_channels = hidden_channels or in_channels
        self.fc1 = nn.Linear(in_channels, hidden_channels)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_channels, out_channels)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Block(PointModule):
    def __init__(

        self,

        channels,

        num_heads,

        patch_size=48,

        mlp_ratio=4.0,

        qkv_bias=True,

        qk_scale=None,

        attn_drop=0.0,

        proj_drop=0.0,

        drop_path=0.0,

        norm_layer=nn.LayerNorm,

        act_layer=nn.GELU,

        pre_norm=True,

        order_index=0,

        cpe_indice_key=None,

        enable_rpe=False,

        enable_flash=True,

        upcast_attention=True,

        upcast_softmax=True,

    ):
        super().__init__()
        self.channels = channels
        self.pre_norm = pre_norm

        self.cpe = PointSequential(
            spconv.SubMConv3d(
                channels,
                channels,
                kernel_size=3,
                bias=True,
                indice_key=cpe_indice_key,
            ),
            nn.Linear(channels, channels),
            norm_layer(channels),
        )

        self.norm1 = PointSequential(norm_layer(channels))
        self.attn = SerializedAttention(
            channels=channels,
            patch_size=patch_size,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            order_index=order_index,
            enable_rpe=enable_rpe,
            enable_flash=enable_flash,
            upcast_attention=upcast_attention,
            upcast_softmax=upcast_softmax,
        )
        self.norm2 = PointSequential(norm_layer(channels))
        self.mlp = PointSequential(
            MLP(
                in_channels=channels,
                hidden_channels=int(channels * mlp_ratio),
                out_channels=channels,
                act_layer=act_layer,
                drop=proj_drop,
            )
        )
        self.drop_path = PointSequential(
            DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        )

    def forward(self, point: Point):
        shortcut = point.feat
        point = self.cpe(point)
        point.feat = shortcut + point.feat
        shortcut = point.feat
        if self.pre_norm:
            point = self.norm1(point)
        point = self.drop_path(self.attn(point))
        point.feat = shortcut + point.feat
        if not self.pre_norm:
            point = self.norm1(point)

        shortcut = point.feat
        if self.pre_norm:
            point = self.norm2(point)
        point = self.drop_path(self.mlp(point))
        point.feat = shortcut + point.feat
        if not self.pre_norm:
            point = self.norm2(point)
        point.sparse_conv_feat = point.sparse_conv_feat.replace_feature(point.feat)
        #point.sparse_conv_feat.replace_feature(point.feat) old version
        return point


class SerializedPooling(PointModule):
    def __init__(

        self,

        in_channels,

        out_channels,

        stride=2,

        norm_layer=None,

        act_layer=None,

        reduce="max",

        shuffle_orders=True,

        traceable=True,  # record parent and cluster

    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels

        assert stride == 2 ** (math.ceil(stride) - 1).bit_length()  # 2, 4, 8
        # TODO: add support to grid pool (any stride)
        self.stride = stride
        assert reduce in ["sum", "mean", "min", "max"]
        self.reduce = reduce
        self.shuffle_orders = shuffle_orders
        self.traceable = traceable

        self.proj = nn.Linear(in_channels, out_channels)
        if norm_layer is not None:
            self.norm = PointSequential(norm_layer(out_channels))
        if act_layer is not None:
            self.act = PointSequential(act_layer())

    def forward(self, point: Point):
        pooling_depth = (math.ceil(self.stride) - 1).bit_length()
        if pooling_depth > point.serialized_depth:
            pooling_depth = 0
        assert {
            "serialized_code",
            "serialized_order",
            "serialized_inverse",
            "serialized_depth",
        }.issubset(
            point.keys()
        ), "Run point.serialization() point cloud before SerializedPooling"
        code = point.serialized_code >> pooling_depth * 3 # if pooling depth=1, right shift 3 i.e. divide by 8
        # this is divide by 2^(pooling_depth+2) i.e. 4*stride
        # this is because it's 3d, shift index by 8 means half
        code_, cluster, counts = torch.unique(
            code[0],
            sorted=True,
            return_inverse=True,
            return_counts=True,
        )
        # indices of point sorted by cluster, for torch_scatter.segment_csr
        _, indices = torch.sort(cluster)
        # index pointer for sorted point, for torch_scatter.segment_csr
        idx_ptr = torch.cat([counts.new_zeros(1), torch.cumsum(counts, dim=0)])
        # head_indices of each cluster, for reduce attr e.g. code, batch
        head_indices = indices[idx_ptr[:-1]] 
        # generate down code, order, inverse
        code = code[:, head_indices] # these are the unique entries
        order = torch.argsort(code)
        inverse = torch.zeros_like(order).scatter_(
            dim=1,
            index=order,
            src=torch.arange(0, code.shape[1], device=order.device).repeat(
                code.shape[0], 1
            ),
        )

        if self.shuffle_orders:
            perm = torch.randperm(code.shape[0])
            code = code[perm]
            order = order[perm]
            inverse = inverse[perm]
        # coordinate is also halved - the space is sparser
        # collect information
        point_dict = Dict(
            feat=torch_scatter.segment_csr(
                self.proj(point.feat)[indices], idx_ptr, reduce=self.reduce
            ),
            coord=torch_scatter.segment_csr(
                point.coord[indices], idx_ptr, reduce="mean"
            ),
            grid_coord=point.grid_coord[head_indices] >> pooling_depth,
            serialized_code=code,
            serialized_order=order,
            serialized_inverse=inverse,
            serialized_depth=point.serialized_depth - pooling_depth,
            batch=point.batch[head_indices],
        )

        if "condition" in point.keys():
            point_dict["condition"] = point.condition
        if "context" in point.keys():
            point_dict["context"] = point.context

        if self.traceable:
            point_dict["pooling_inverse"] = cluster
            point_dict["pooling_parent"] = point
        point = Point(point_dict)
        if self.norm is not None:
            point = self.norm(point)
        if self.act is not None:
            point = self.act(point)
        point.sparsify()
        return point


class SerializedUnpooling(PointModule):
    def __init__(

        self,

        in_channels,

        skip_channels,

        out_channels,

        norm_layer=None,

        act_layer=None,

        traceable=False,  # record parent and cluster

    ):
        super().__init__()
        self.proj = PointSequential(nn.Linear(in_channels, out_channels))
        self.proj_skip = PointSequential(nn.Linear(skip_channels, out_channels))

        if norm_layer is not None:
            self.proj.add(norm_layer(out_channels))
            self.proj_skip.add(norm_layer(out_channels))

        if act_layer is not None:
            self.proj.add(act_layer())
            self.proj_skip.add(act_layer())

        self.traceable = traceable

    def forward(self, point):
        assert "pooling_parent" in point.keys()
        assert "pooling_inverse" in point.keys()
        parent = point.pop("pooling_parent")
        inverse = point.pop("pooling_inverse")
        point = self.proj(point)
        parent = self.proj_skip(parent)
        parent.feat = parent.feat + point.feat[inverse]

        if self.traceable:
            parent["unpooling_parent"] = point
        return parent


class Embedding(PointModule):
    def __init__(

        self,

        in_channels,

        embed_channels,

        norm_layer=None,

        act_layer=None,

    ):
        super().__init__()
        self.in_channels = in_channels
        self.embed_channels = embed_channels

        # TODO: check remove spconv
        self.stem = PointSequential(
            conv=spconv.SubMConv3d(
                in_channels,
                embed_channels,
                kernel_size=5,
                padding=1,
                bias=False,
                indice_key="stem",
            )
        )
        if norm_layer is not None:
            self.stem.add(norm_layer(embed_channels), name="norm")
        if act_layer is not None:
            self.stem.add(act_layer(), name="act")

    def forward(self, point: Point):
        point = self.stem(point)
        return point


class PointTransformerV3(PointModule):
    def __init__(

        self,

        in_channels=6,

        order=("z", "z-trans", "hilbert", "hilbert-trans"),

        stride=(2, 2, 2, 2),

        enc_depths=(2, 2, 2, 6, 2),

        enc_channels=(32, 64, 128, 256, 512),

        enc_num_head=(2, 4, 8, 16, 32),

        enc_patch_size=(1024, 1024, 1024, 1024, 1024),

        dec_depths=(2, 2, 2, 2),

        dec_channels=(64, 64, 128, 256),

        dec_num_head=(4, 4, 8, 16),

        dec_patch_size=(1024, 1024, 1024, 1024),

        mlp_ratio=4,

        qkv_bias=True,

        qk_scale=None,

        attn_drop=0.0,

        proj_drop=0.0,

        drop_path=0.3,

        pre_norm=True,

        shuffle_orders=True,

        enable_rpe=False,

        enable_flash=False,#True,

        upcast_attention=False,

        upcast_softmax=False,

        cls_mode=False,

        pdnorm_bn=False,

        pdnorm_ln=False,

        pdnorm_decouple=True,

        pdnorm_adaptive=False,

        pdnorm_affine=True,

        pdnorm_conditions=("ScanNet", "S3DIS", "Structured3D"),

    ):
        super().__init__()
        self.num_stages = len(enc_depths)
        self.order = [order] if isinstance(order, str) else order
        self.cls_mode = cls_mode
        self.shuffle_orders = shuffle_orders

        assert self.num_stages == len(stride) + 1
        assert self.num_stages == len(enc_depths)
        assert self.num_stages == len(enc_channels)
        assert self.num_stages == len(enc_num_head)
        assert self.num_stages == len(enc_patch_size)
        assert self.cls_mode or self.num_stages == len(dec_depths) + 1
        assert self.cls_mode or self.num_stages == len(dec_channels) + 1
        assert self.cls_mode or self.num_stages == len(dec_num_head) + 1
        assert self.cls_mode or self.num_stages == len(dec_patch_size) + 1

        # norm layers
        if pdnorm_bn:
            bn_layer = partial(
                PDNorm,
                norm_layer=partial(
                    nn.BatchNorm1d, eps=1e-3, momentum=0.01, affine=pdnorm_affine
                ),
                conditions=pdnorm_conditions,
                decouple=pdnorm_decouple,
                adaptive=pdnorm_adaptive,
            )
        else:
            bn_layer = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
        if pdnorm_ln:
            ln_layer = partial(
                PDNorm,
                norm_layer=partial(nn.LayerNorm, elementwise_affine=pdnorm_affine),
                conditions=pdnorm_conditions,
                decouple=pdnorm_decouple,
                adaptive=pdnorm_adaptive,
            )
        else:
            ln_layer = nn.LayerNorm
        # activation layers
        act_layer = nn.GELU

        self.embedding = Embedding(
            in_channels=in_channels,
            embed_channels=enc_channels[0],
            norm_layer=bn_layer,
            act_layer=act_layer,
        )

        # encoder
        enc_drop_path = [
            x.item() for x in torch.linspace(0, drop_path, sum(enc_depths))
        ]
        self.enc = PointSequential()
        for s in range(self.num_stages):
            enc_drop_path_ = enc_drop_path[
                sum(enc_depths[:s]) : sum(enc_depths[: s + 1])
            ]
            enc = PointSequential()
            if s > 0:
                enc.add(
                    SerializedPooling(
                        in_channels=enc_channels[s - 1],
                        out_channels=enc_channels[s],
                        stride=stride[s - 1],
                        norm_layer=bn_layer,
                        act_layer=act_layer,
                    ),
                    name="down",
                )
            for i in range(enc_depths[s]):
                enc.add(
                    Block(
                        channels=enc_channels[s],
                        num_heads=enc_num_head[s],
                        patch_size=enc_patch_size[s],
                        mlp_ratio=mlp_ratio,
                        qkv_bias=qkv_bias,
                        qk_scale=qk_scale,
                        attn_drop=attn_drop,
                        proj_drop=proj_drop,
                        drop_path=enc_drop_path_[i],
                        norm_layer=ln_layer,
                        act_layer=act_layer,
                        pre_norm=pre_norm,
                        order_index=i % len(self.order),
                        cpe_indice_key=f"stage{s}",
                        enable_rpe=enable_rpe,
                        enable_flash=enable_flash,
                        upcast_attention=upcast_attention,
                        upcast_softmax=upcast_softmax,
                    ),
                    name=f"block{i}",
                )
            if len(enc) != 0:
                self.enc.add(module=enc, name=f"enc{s}")

        # decoder
        if not self.cls_mode:
            dec_drop_path = [
                x.item() for x in torch.linspace(0, drop_path, sum(dec_depths))
            ]
            self.dec = PointSequential()
            dec_channels = list(dec_channels) + [enc_channels[-1]]
            for s in reversed(range(self.num_stages - 1)):
                dec_drop_path_ = dec_drop_path[
                    sum(dec_depths[:s]) : sum(dec_depths[: s + 1])
                ]
                dec_drop_path_.reverse()
                dec = PointSequential()
                dec.add(
                    SerializedUnpooling(
                        in_channels=dec_channels[s + 1],
                        skip_channels=enc_channels[s],
                        out_channels=dec_channels[s],
                        norm_layer=bn_layer,
                        act_layer=act_layer,
                    ),
                    name="up",
                )
                for i in range(dec_depths[s]):
                    dec.add(
                        Block(
                            channels=dec_channels[s],
                            num_heads=dec_num_head[s],
                            patch_size=dec_patch_size[s],
                            mlp_ratio=mlp_ratio,
                            qkv_bias=qkv_bias,
                            qk_scale=qk_scale,
                            attn_drop=attn_drop,
                            proj_drop=proj_drop,
                            drop_path=dec_drop_path_[i],
                            norm_layer=ln_layer,
                            act_layer=act_layer,
                            pre_norm=pre_norm,
                            order_index=i % len(self.order),
                            cpe_indice_key=f"stage{s}",
                            enable_rpe=enable_rpe,
                            enable_flash=enable_flash,
                            upcast_attention=upcast_attention,
                            upcast_softmax=upcast_softmax,
                        ),
                        name=f"block{i}",
                    )
                self.dec.add(module=dec, name=f"dec{s}")

    def forward(self, data_dict):
        """

        A data_dict is a dictionary containing properties of a batched point cloud.

        It should contain the following properties for PTv3:

        1. "feat": feature of point cloud

        2. "grid_coord": discrete coordinate after grid sampling (voxelization) or "coord" + "grid_size"

        3. "offset" or "batch": https://github.com/Pointcept/Pointcept?tab=readme-ov-file#offset

        """
        point = Point(data_dict)
        point.serialization(order=self.order, shuffle_orders=self.shuffle_orders)
        point.sparsify()
        point = self.embedding(point)
        point = self.enc(point) #23,512
        if not self.cls_mode:
            point = self.dec(point) #n_pts, 64
        return point


class PointSemSeg(nn.Module):
    def __init__(self, args, dim_output, emb=64, init_logit_scale=np.log(1 / 0.07)):
        super().__init__()
        
        self.dim_output = dim_output
        
        # define the extractor
        self.extractor = PointTransformerV3() # this outputs a 64-dim feature per point

        # define logit scale
        self.ln_logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)

        self.fc1 = nn.Linear(emb, emb)
        self.fc2 = nn.Linear(emb, emb)
        self.fc3 = nn.Linear(emb, emb)
        self.fc4 = nn.Linear(emb, dim_output)
    
    def distillation_head(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = self.fc4(x)
        return x
    
    def freeze_extractor(self):
        for param in self.extractor.parameters():
            param.requires_grad = False

    def forward(self, x, return_pts_feat=False):
        pointall = self.extractor(x)
        feature = pointall["feat"] #[n_pts_cur_batch, 64]
        
        x = self.distillation_head(feature) #[n_pts_cur_batch, dim_out]
        
        if return_pts_feat:
            return x, feature
        else:     
            return x
        

class Find3D(nn.Module, PyTorchModelHubMixin):
    def __init__(self, dim_output, emb=64, init_logit_scale=np.log(1 / 0.07)):
        super().__init__()
        
        self.dim_output = dim_output
        
        # define the extractor
        self.extractor = PointTransformerV3() # this outputs a 64-dim feature per point

        # define logit scale
        self.ln_logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)

        self.fc1 = nn.Linear(emb, emb)
        self.fc2 = nn.Linear(emb, emb)
        self.fc3 = nn.Linear(emb, emb)
        self.fc4 = nn.Linear(emb, dim_output)
    
    def distillation_head(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = self.fc4(x)
        return x
    
    def freeze_extractor(self):
        for param in self.extractor.parameters():
            param.requires_grad = False

    def forward(self, x, return_pts_feat=False):
        pointall = self.extractor(x)
        feature = pointall["feat"] #[n_pts_cur_batch, 64]
        
        x = self.distillation_head(feature) #[n_pts_cur_batch, dim_out]
        
        if return_pts_feat:
            return x, feature
        else:     
            return x