File size: 5,632 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
Semantic KITTI dataset

Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com)
Please cite our work if the code is helpful to you.
"""

import os
import numpy as np

from .builder import DATASETS
from .defaults import DefaultDataset


@DATASETS.register_module()
class SemanticKITTIDataset(DefaultDataset):
    def __init__(self, ignore_index=-1, **kwargs):
        self.ignore_index = ignore_index
        self.learning_map = self.get_learning_map(ignore_index)
        self.learning_map_inv = self.get_learning_map_inv(ignore_index)
        super().__init__(ignore_index=ignore_index, **kwargs)

    def get_data_list(self):
        split2seq = dict(
            train=[0, 1, 2, 3, 4, 5, 6, 7, 9, 10],
            val=[8],
            test=[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
        )
        if isinstance(self.split, str):
            seq_list = split2seq[self.split]
        elif isinstance(self.split, list):
            seq_list = []
            for split in self.split:
                seq_list += split2seq[split]
        else:
            raise NotImplementedError

        data_list = []
        for seq in seq_list:
            seq = str(seq).zfill(2)
            seq_folder = os.path.join(self.data_root, "dataset", "sequences", seq)
            seq_files = sorted(os.listdir(os.path.join(seq_folder, "velodyne")))
            data_list += [
                os.path.join(seq_folder, "velodyne", file) for file in seq_files
            ]
        return data_list

    def get_data(self, idx):
        data_path = self.data_list[idx % len(self.data_list)]
        with open(data_path, "rb") as b:
            scan = np.fromfile(b, dtype=np.float32).reshape(-1, 4)
        coord = scan[:, :3]
        strength = scan[:, -1].reshape([-1, 1])

        label_file = data_path.replace("velodyne", "labels").replace(".bin", ".label")
        if os.path.exists(label_file):
            with open(label_file, "rb") as a:
                segment = np.fromfile(a, dtype=np.int32).reshape(-1)
                segment = np.vectorize(self.learning_map.__getitem__)(
                    segment & 0xFFFF
                ).astype(np.int32)
        else:
            segment = np.zeros(scan.shape[0]).astype(np.int32)
        data_dict = dict(
            coord=coord,
            strength=strength,
            segment=segment,
            name=self.get_data_name(idx),
        )
        return data_dict

    def get_data_name(self, idx):
        file_path = self.data_list[idx % len(self.data_list)]
        dir_path, file_name = os.path.split(file_path)
        sequence_name = os.path.basename(os.path.dirname(dir_path))
        frame_name = os.path.splitext(file_name)[0]
        data_name = f"{sequence_name}_{frame_name}"
        return data_name

    @staticmethod
    def get_learning_map(ignore_index):
        learning_map = {
            0: ignore_index,  # "unlabeled"
            1: ignore_index,  # "outlier" mapped to "unlabeled" --------------------------mapped
            10: 0,  # "car"
            11: 1,  # "bicycle"
            13: 4,  # "bus" mapped to "other-vehicle" --------------------------mapped
            15: 2,  # "motorcycle"
            16: 4,  # "on-rails" mapped to "other-vehicle" ---------------------mapped
            18: 3,  # "truck"
            20: 4,  # "other-vehicle"
            30: 5,  # "person"
            31: 6,  # "bicyclist"
            32: 7,  # "motorcyclist"
            40: 8,  # "road"
            44: 9,  # "parking"
            48: 10,  # "sidewalk"
            49: 11,  # "other-ground"
            50: 12,  # "building"
            51: 13,  # "fence"
            52: ignore_index,  # "other-structure" mapped to "unlabeled" ------------------mapped
            60: 8,  # "lane-marking" to "road" ---------------------------------mapped
            70: 14,  # "vegetation"
            71: 15,  # "trunk"
            72: 16,  # "terrain"
            80: 17,  # "pole"
            81: 18,  # "traffic-sign"
            99: ignore_index,  # "other-object" to "unlabeled" ----------------------------mapped
            252: 0,  # "moving-car" to "car" ------------------------------------mapped
            253: 6,  # "moving-bicyclist" to "bicyclist" ------------------------mapped
            254: 5,  # "moving-person" to "person" ------------------------------mapped
            255: 7,  # "moving-motorcyclist" to "motorcyclist" ------------------mapped
            256: 4,  # "moving-on-rails" mapped to "other-vehicle" --------------mapped
            257: 4,  # "moving-bus" mapped to "other-vehicle" -------------------mapped
            258: 3,  # "moving-truck" to "truck" --------------------------------mapped
            259: 4,  # "moving-other"-vehicle to "other-vehicle" ----------------mapped
        }
        return learning_map

    @staticmethod
    def get_learning_map_inv(ignore_index):
        learning_map_inv = {
            ignore_index: ignore_index,  # "unlabeled"
            0: 10,  # "car"
            1: 11,  # "bicycle"
            2: 15,  # "motorcycle"
            3: 18,  # "truck"
            4: 20,  # "other-vehicle"
            5: 30,  # "person"
            6: 31,  # "bicyclist"
            7: 32,  # "motorcyclist"
            8: 40,  # "road"
            9: 44,  # "parking"
            10: 48,  # "sidewalk"
            11: 49,  # "other-ground"
            12: 50,  # "building"
            13: 51,  # "fence"
            14: 70,  # "vegetation"
            15: 71,  # "trunk"
            16: 72,  # "terrain"
            17: 80,  # "pole"
            18: 81,  # "traffic-sign"
        }
        return learning_map_inv