Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,528 Bytes
4893ce0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
"""
Preprocessing Script for ScanNet++
modified from official preprocess code.
Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com)
Please cite our work if the code is helpful to you.
"""
import argparse
import json
import numpy as np
import pandas as pd
import open3d as o3d
import multiprocessing as mp
from collections import OrderedDict
from concurrent.futures import ProcessPoolExecutor
from itertools import repeat
from pathlib import Path
def parse_scene(
name,
split,
dataset_root,
output_root,
label_mapping,
class2idx,
ignore_index=-1,
):
print(f"Parsing scene {name} in {split} split")
dataset_root = Path(dataset_root)
output_root = Path(output_root)
scene_path = dataset_root / "data" / name / "scans"
mesh_path = scene_path / "mesh_aligned_0.05.ply"
segs_path = scene_path / "segments.json"
anno_path = scene_path / "segments_anno.json"
# load mesh vertices and colors
mesh = o3d.io.read_triangle_mesh(str(mesh_path))
# extract mesh information
mesh.compute_vertex_normals(normalized=True)
coord = np.array(mesh.vertices).astype(np.float32)
color = (np.array(mesh.vertex_colors) * 255).astype(np.uint8)
normal = np.array(mesh.vertex_normals).astype(np.float32)
save_path = output_root / split / name
save_path.mkdir(parents=True, exist_ok=True)
np.save(save_path / "coord.npy", coord)
np.save(save_path / "color.npy", color)
np.save(save_path / "normal.npy", normal)
if split == "test":
return
# get label on vertices
# load segments = vertices per segment ID
with open(segs_path) as f:
segments = json.load(f)
# load anno = (instance, groups of segments)
with open(anno_path) as f:
anno = json.load(f)
seg_indices = np.array(segments["segIndices"], dtype=np.uint32)
num_vertices = len(seg_indices)
assert num_vertices == len(coord)
semantic_gt = np.ones((num_vertices, 3), dtype=np.int16) * ignore_index
instance_gt = np.ones((num_vertices, 3), dtype=np.int16) * ignore_index
# number of labels are used per vertex. initially 0
# increment each time a new label is added
instance_size = np.ones((num_vertices, 3), dtype=np.int16) * np.inf
# keep track of the size of the instance (#vertices) assigned to each vertex
# later, keep the label of the smallest instance for major label of vertices
# store inf initially so that we can pick the smallest instance
labels_used = np.zeros(num_vertices, dtype=np.int16)
for idx, instance in enumerate(anno["segGroups"]):
label = instance["label"]
instance["label_orig"] = label
# remap label
instance["label"] = label_mapping.get(label, None)
instance["label_index"] = class2idx.get(label, ignore_index)
if instance["label_index"] == ignore_index:
continue
# get all the vertices with segment index in this instance
# and max number of labels not yet applied
mask = np.isin(seg_indices, instance["segments"]) & (labels_used < 3)
size = mask.sum()
if size == 0:
continue
# get the position to add the label - 0, 1, 2
label_position = labels_used[mask]
semantic_gt[mask, label_position] = instance["label_index"]
# store all valid instance (include ignored instance)
instance_gt[mask, label_position] = instance["objectId"]
instance_size[mask, label_position] = size
labels_used[mask] += 1
# major label is the label of smallest instance for each vertex
# use major label for single class segmentation
# shift major label to the first column
mask = labels_used > 1
if mask.sum() > 0:
major_label_position = np.argmin(instance_size[mask], axis=1)
major_semantic_label = semantic_gt[mask, major_label_position]
semantic_gt[mask, major_label_position] = semantic_gt[:, 0][mask]
semantic_gt[:, 0][mask] = major_semantic_label
major_instance_label = instance_gt[mask, major_label_position]
instance_gt[mask, major_label_position] = instance_gt[:, 0][mask]
instance_gt[:, 0][mask] = major_instance_label
np.save(save_path / "segment.npy", semantic_gt)
np.save(save_path / "instance.npy", instance_gt)
def filter_map_classes(mapping, count_thresh, count_type, mapping_type):
mapping = mapping[mapping[count_type] >= count_thresh]
if mapping_type == "semantic":
map_key = "semantic_map_to"
elif mapping_type == "instance":
map_key = "instance_map_to"
else:
raise NotImplementedError
# create a dict with classes to be mapped
# classes that don't have mapping are entered as x->x
# otherwise x->y
map_dict = OrderedDict()
for i in range(mapping.shape[0]):
row = mapping.iloc[i]
class_name = row["class"]
map_target = row[map_key]
# map to None or some other label -> don't add this class to the label list
try:
if len(map_target) > 0:
# map to None -> don't use this class
if map_target == "None":
pass
else:
# map to something else -> use this class
map_dict[class_name] = map_target
except TypeError:
# nan values -> no mapping, keep label as is
if class_name not in map_dict:
map_dict[class_name] = class_name
return map_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset_root",
required=True,
help="Path to the ScanNet++ dataset containing data/metadata/splits.",
)
parser.add_argument(
"--output_root",
required=True,
help="Output path where train/val/test folders will be located.",
)
parser.add_argument(
"--ignore_index",
default=-1,
type=int,
help="Default ignore index.",
)
parser.add_argument(
"--num_workers",
default=mp.cpu_count(),
type=int,
help="Num workers for preprocessing.",
)
config = parser.parse_args()
print("Loading meta data...")
config.dataset_root = Path(config.dataset_root)
config.output_root = Path(config.output_root)
train_list = np.loadtxt(
config.dataset_root / "splits" / "nvs_sem_train.txt",
dtype=str,
)
print("Num samples in training split:", len(train_list))
val_list = np.loadtxt(
config.dataset_root / "splits" / "nvs_sem_val.txt",
dtype=str,
)
print("Num samples in validation split:", len(val_list))
test_list = np.loadtxt(
config.dataset_root / "splits" / "sem_test.txt",
dtype=str,
)
print("Num samples in testing split:", len(test_list))
data_list = np.concatenate([train_list, val_list, test_list])
split_list = np.concatenate(
[
np.full_like(train_list, "train"),
np.full_like(val_list, "val"),
np.full_like(test_list, "test"),
]
)
# Parsing label information and mapping
segment_class_names = np.loadtxt(
config.dataset_root / "metadata" / "semantic_benchmark" / "top100.txt",
dtype=str,
delimiter=".", # dummy delimiter to replace " "
)
print("Num classes in segment class list:", len(segment_class_names))
instance_class_names = np.loadtxt(
config.dataset_root / "metadata" / "semantic_benchmark" / "top100_instance.txt",
dtype=str,
delimiter=".", # dummy delimiter to replace " "
)
print("Num classes in instance class list:", len(instance_class_names))
label_mapping = pd.read_csv(
config.dataset_root / "metadata" / "semantic_benchmark" / "map_benchmark.csv"
)
label_mapping = filter_map_classes(
label_mapping, count_thresh=0, count_type="count", mapping_type="semantic"
)
class2idx = {
class_name: idx for (idx, class_name) in enumerate(segment_class_names)
}
print("Processing scenes...")
pool = ProcessPoolExecutor(max_workers=config.num_workers)
_ = list(
pool.map(
parse_scene,
data_list,
split_list,
repeat(config.dataset_root),
repeat(config.output_root),
repeat(label_mapping),
repeat(class2idx),
repeat(config.ignore_index),
)
)
pool.shutdown()
|