File size: 22,499 Bytes
83ae704 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Implementation of MASt3R training losses
# --------------------------------------------------------
import torch
import torch.nn as nn
import numpy as np
from sklearn.metrics import average_precision_score
import mast3r.utils.path_to_dust3r # noqa
from dust3r.losses import BaseCriterion, Criterion, MultiLoss, Sum, ConfLoss
from dust3r.losses import Regr3D as Regr3D_dust3r
from dust3r.utils.geometry import (geotrf, inv, normalize_pointcloud)
from dust3r.inference import get_pred_pts3d
from dust3r.utils.geometry import get_joint_pointcloud_depth, get_joint_pointcloud_center_scale
def apply_log_to_norm(xyz):
d = xyz.norm(dim=-1, keepdim=True)
xyz = xyz / d.clip(min=1e-8)
xyz = xyz * torch.log1p(d)
return xyz
class Regr3D (Regr3D_dust3r):
def __init__(self, criterion, norm_mode='avg_dis', gt_scale=False, opt_fit_gt=False,
sky_loss_value=2, max_metric_scale=False, loss_in_log=False):
self.loss_in_log = loss_in_log
if norm_mode.startswith('?'):
# do no norm pts from metric scale datasets
self.norm_all = False
self.norm_mode = norm_mode[1:]
else:
self.norm_all = True
self.norm_mode = norm_mode
super().__init__(criterion, self.norm_mode, gt_scale)
self.sky_loss_value = sky_loss_value
self.max_metric_scale = max_metric_scale
def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None):
# everything is normalized w.r.t. camera of view1
in_camera1 = inv(gt1['camera_pose'])
gt_pts1 = geotrf(in_camera1, gt1['pts3d']) # B,H,W,3
gt_pts2 = geotrf(in_camera1, gt2['pts3d']) # B,H,W,3
valid1 = gt1['valid_mask'].clone()
valid2 = gt2['valid_mask'].clone()
if dist_clip is not None:
# points that are too far-away == invalid
dis1 = gt_pts1.norm(dim=-1) # (B, H, W)
dis2 = gt_pts2.norm(dim=-1) # (B, H, W)
valid1 = valid1 & (dis1 <= dist_clip)
valid2 = valid2 & (dis2 <= dist_clip)
if self.loss_in_log == 'before':
# this only make sense when depth_mode == 'linear'
gt_pts1 = apply_log_to_norm(gt_pts1)
gt_pts2 = apply_log_to_norm(gt_pts2)
pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False).clone()
pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True).clone()
if not self.norm_all:
if self.max_metric_scale:
B = valid1.shape[0]
# valid1: B, H, W
# torch.linalg.norm(gt_pts1, dim=-1) -> B, H, W
# dist1_to_cam1 -> reshape to B, H*W
dist1_to_cam1 = torch.where(valid1, torch.linalg.norm(gt_pts1, dim=-1), 0).view(B, -1)
dist2_to_cam1 = torch.where(valid2, torch.linalg.norm(gt_pts2, dim=-1), 0).view(B, -1)
# is_metric_scale: B
# dist1_to_cam1.max(dim=-1).values -> B
gt1['is_metric_scale'] = gt1['is_metric_scale'] \
& (dist1_to_cam1.max(dim=-1).values < self.max_metric_scale) \
& (dist2_to_cam1.max(dim=-1).values < self.max_metric_scale)
gt2['is_metric_scale'] = gt1['is_metric_scale']
mask = ~gt1['is_metric_scale']
else:
mask = torch.ones_like(gt1['is_metric_scale'])
# normalize 3d points
if self.norm_mode and mask.any():
pr_pts1[mask], pr_pts2[mask] = normalize_pointcloud(pr_pts1[mask], pr_pts2[mask], self.norm_mode,
valid1[mask], valid2[mask])
if self.norm_mode and not self.gt_scale:
gt_pts1, gt_pts2, norm_factor = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode,
valid1, valid2, ret_factor=True)
# apply the same normalization to prediction
pr_pts1[~mask] = pr_pts1[~mask] / norm_factor[~mask]
pr_pts2[~mask] = pr_pts2[~mask] / norm_factor[~mask]
# return sky segmentation, making sure they don't include any labelled 3d points
sky1 = gt1['sky_mask'] & (~valid1)
sky2 = gt2['sky_mask'] & (~valid2)
return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, sky1, sky2, {}
def compute_loss(self, gt1, gt2, pred1, pred2, **kw):
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \
self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw)
if self.sky_loss_value > 0:
assert self.criterion.reduction == 'none', 'sky_loss_value should be 0 if no conf loss'
# add the sky pixel as "valid" pixels...
mask1 = mask1 | sky1
mask2 = mask2 | sky2
# loss on img1 side
pred_pts1 = pred_pts1[mask1]
gt_pts1 = gt_pts1[mask1]
if self.loss_in_log and self.loss_in_log != 'before':
# this only make sense when depth_mode == 'exp'
pred_pts1 = apply_log_to_norm(pred_pts1)
gt_pts1 = apply_log_to_norm(gt_pts1)
l1 = self.criterion(pred_pts1, gt_pts1)
# loss on gt2 side
pred_pts2 = pred_pts2[mask2]
gt_pts2 = gt_pts2[mask2]
if self.loss_in_log and self.loss_in_log != 'before':
pred_pts2 = apply_log_to_norm(pred_pts2)
gt_pts2 = apply_log_to_norm(gt_pts2)
l2 = self.criterion(pred_pts2, gt_pts2)
if self.sky_loss_value > 0:
assert self.criterion.reduction == 'none', 'sky_loss_value should be 0 if no conf loss'
# ... but force the loss to be high there
l1 = torch.where(sky1[mask1], self.sky_loss_value, l1)
l2 = torch.where(sky2[mask2], self.sky_loss_value, l2)
self_name = type(self).__name__
details = {self_name + '_pts3d_1': float(l1.mean()), self_name + '_pts3d_2': float(l2.mean())}
return Sum((l1, mask1), (l2, mask2)), (details | monitoring)
class Regr3D_ShiftInv (Regr3D):
""" Same than Regr3D but invariant to depth shift.
"""
def get_all_pts3d(self, gt1, gt2, pred1, pred2):
# compute unnormalized points
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \
super().get_all_pts3d(gt1, gt2, pred1, pred2)
# compute median depth
gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2]
pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2]
gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[:, None, None]
pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[:, None, None]
# subtract the median depth
gt_z1 -= gt_shift_z
gt_z2 -= gt_shift_z
pred_z1 -= pred_shift_z
pred_z2 -= pred_shift_z
# monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach())
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring
class Regr3D_ScaleInv (Regr3D):
""" Same than Regr3D but invariant to depth scale.
if gt_scale == True: enforce the prediction to take the same scale than GT
"""
def get_all_pts3d(self, gt1, gt2, pred1, pred2):
# compute depth-normalized points
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \
super().get_all_pts3d(gt1, gt2, pred1, pred2)
# measure scene scale
_, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2)
_, pred_scale = get_joint_pointcloud_center_scale(pred_pts1, pred_pts2, mask1, mask2)
# prevent predictions to be in a ridiculous range
pred_scale = pred_scale.clip(min=1e-3, max=1e3)
# subtract the median depth
if self.gt_scale:
pred_pts1 *= gt_scale / pred_scale
pred_pts2 *= gt_scale / pred_scale
# monitoring = dict(monitoring, pred_scale=(pred_scale/gt_scale).mean())
else:
gt_pts1 /= gt_scale
gt_pts2 /= gt_scale
pred_pts1 /= pred_scale
pred_pts2 /= pred_scale
# monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach())
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring
class Regr3D_ScaleShiftInv (Regr3D_ScaleInv, Regr3D_ShiftInv):
# calls Regr3D_ShiftInv first, then Regr3D_ScaleInv
pass
def get_similarities(desc1, desc2, euc=False):
if euc: # euclidean distance in same range than similarities
dists = (desc1[:, :, None] - desc2[:, None]).norm(dim=-1)
sim = 1 / (1 + dists)
else:
# Compute similarities
sim = desc1 @ desc2.transpose(-2, -1)
return sim
class MatchingCriterion(BaseCriterion):
def __init__(self, reduction='mean', fp=torch.float32):
super().__init__(reduction)
self.fp = fp
def forward(self, a, b, valid_matches=None, euc=False):
assert a.ndim >= 2 and 1 <= a.shape[-1], f'Bad shape = {a.shape}'
dist = self.loss(a.to(self.fp), b.to(self.fp), valid_matches, euc=euc)
# one dimension less or reduction to single value
assert (valid_matches is None and dist.ndim == a.ndim -
1) or self.reduction in ['mean', 'sum', '1-mean', 'none']
if self.reduction == 'none':
return dist
if self.reduction == 'sum':
return dist.sum()
if self.reduction == 'mean':
return dist.mean() if dist.numel() > 0 else dist.new_zeros(())
if self.reduction == '1-mean':
return 1. - dist.mean() if dist.numel() > 0 else dist.new_ones(())
raise ValueError(f'bad {self.reduction=} mode')
def loss(self, a, b, valid_matches=None):
raise NotImplementedError
class InfoNCE(MatchingCriterion):
def __init__(self, temperature=0.07, eps=1e-8, mode='all', **kwargs):
super().__init__(**kwargs)
self.temperature = temperature
self.eps = eps
assert mode in ['all', 'proper', 'dual']
self.mode = mode
def loss(self, desc1, desc2, valid_matches=None, euc=False):
# valid positives are along diagonals
B, N, D = desc1.shape
B2, N2, D2 = desc2.shape
assert B == B2 and D == D2
if valid_matches is None:
valid_matches = torch.ones([B, N], dtype=bool)
# torch.all(valid_matches.sum(dim=-1) > 0) some pairs have no matches????
assert valid_matches.shape == torch.Size([B, N]) and valid_matches.sum() > 0
# Tempered similarities
sim = get_similarities(desc1, desc2, euc) / self.temperature
sim[sim.isnan()] = -torch.inf # ignore nans
# Softmax of positives with temperature
sim = sim.exp_() # save peak memory
positives = sim.diagonal(dim1=-2, dim2=-1)
# Loss
if self.mode == 'all': # Previous InfoNCE
loss = -torch.log((positives / sim.sum(dim=-1).sum(dim=-1, keepdim=True)).clip(self.eps))
elif self.mode == 'proper': # Proper InfoNCE
loss = -(torch.log((positives / sim.sum(dim=-2)).clip(self.eps)) +
torch.log((positives / sim.sum(dim=-1)).clip(self.eps)))
elif self.mode == 'dual': # Dual Softmax
loss = -(torch.log((positives**2 / sim.sum(dim=-1) / sim.sum(dim=-2)).clip(self.eps)))
else:
raise ValueError("This should not happen...")
return loss[valid_matches]
class APLoss (MatchingCriterion):
""" AP loss.
Input: (N, M) values in [min, max]
label: (N, M) values in {0, 1}
Returns: 1 - mAP (mean AP for each n in {1..N})
Note: typically, this is what you wanna minimize
"""
def __init__(self, nq='torch', min=0, max=1, euc=False, **kw):
super().__init__(**kw)
# Exact/True AP loss (not differentiable)
if nq == 0:
nq = 'sklearn' # special case
try:
self.compute_AP = eval('self.compute_true_AP_' + nq)
except:
raise ValueError("Unknown mode %s for AP loss" % nq)
@staticmethod
def compute_true_AP_sklearn(scores, labels):
def compute_AP(label, score):
return average_precision_score(label, score)
aps = scores.new_zeros((scores.shape[0], scores.shape[1]))
label_np = labels.cpu().numpy().astype(bool)
scores_np = scores.cpu().numpy()
for bi in range(scores_np.shape[0]):
for i in range(scores_np.shape[1]):
labels = label_np[bi, i, :]
if labels.sum() < 1:
continue
aps[bi, i] = compute_AP(labels, scores_np[bi, i, :])
return aps
@staticmethod
def compute_true_AP_torch(scores, labels):
assert scores.shape == labels.shape
B, N, M = labels.shape
dev = labels.device
with torch.no_grad():
# sort scores
_, order = scores.sort(dim=-1, descending=True)
# sort labels accordingly
labels = labels[torch.arange(B, device=dev)[:, None, None].expand(order.shape),
torch.arange(N, device=dev)[None, :, None].expand(order.shape),
order]
# compute number of positives per query
npos = labels.sum(dim=-1)
assert torch.all(torch.isclose(npos, npos[0, 0])
), "only implemented for constant number of positives per query"
npos = int(npos[0, 0])
# compute precision at each recall point
posrank = labels.nonzero()[:, -1].view(B, N, npos)
recall = torch.arange(1, 1 + npos, dtype=torch.float32, device=dev)[None, None, :].expand(B, N, npos)
precision = recall / (1 + posrank).float()
# average precision values at all recall points
aps = precision.mean(dim=-1)
return aps
def loss(self, desc1, desc2, valid_matches=None, euc=False): # if matches is None, positives are the diagonal
B, N1, D = desc1.shape
B2, N2, D2 = desc2.shape
assert B == B2 and D == D2
scores = get_similarities(desc1, desc2, euc)
labels = torch.zeros([B, N1, N2], dtype=scores.dtype, device=scores.device)
# allow all diagonal positives and only mask afterwards
labels.diagonal(dim1=-2, dim2=-1)[...] = 1.
apscore = self.compute_AP(scores, labels)
if valid_matches is not None:
apscore = apscore[valid_matches]
return apscore
class MatchingLoss (Criterion, MultiLoss):
"""
Matching loss per image
only compare pixels inside an image but not in the whole batch as what would be done usually
"""
def __init__(self, criterion, withconf=False, use_pts3d=False, negatives_padding=0, blocksize=4096):
super().__init__(criterion)
self.negatives_padding = negatives_padding
self.use_pts3d = use_pts3d
self.blocksize = blocksize
self.withconf = withconf
def add_negatives(self, outdesc2, desc2, batchid, x2, y2):
if self.negatives_padding:
B, H, W, D = desc2.shape
negatives = torch.ones([B, H, W], device=desc2.device, dtype=bool)
negatives[batchid, y2, x2] = False
sel = negatives & (negatives.view([B, -1]).cumsum(dim=-1).view(B, H, W)
<= self.negatives_padding) # take the N-first negatives
outdesc2 = torch.cat([outdesc2, desc2[sel].view([B, -1, D])], dim=1)
return outdesc2
def get_confs(self, pred1, pred2, sel1, sel2):
if self.withconf:
if self.use_pts3d:
outconfs1 = pred1['conf'][sel1]
outconfs2 = pred2['conf'][sel2]
else:
outconfs1 = pred1['desc_conf'][sel1]
outconfs2 = pred2['desc_conf'][sel2]
else:
outconfs1 = outconfs2 = None
return outconfs1, outconfs2
def get_descs(self, pred1, pred2):
if self.use_pts3d:
desc1, desc2 = pred1['pts3d'], pred2['pts3d_in_other_view']
else:
desc1, desc2 = pred1['desc'], pred2['desc']
return desc1, desc2
def get_matching_descs(self, gt1, gt2, pred1, pred2, **kw):
outdesc1 = outdesc2 = outconfs1 = outconfs2 = None
# Recover descs, GT corres and valid mask
desc1, desc2 = self.get_descs(pred1, pred2)
(x1, y1), (x2, y2) = gt1['corres'].unbind(-1), gt2['corres'].unbind(-1)
valid_matches = gt1['valid_corres']
# Select descs that have GT matches
B, N = x1.shape
batchid = torch.arange(B)[:, None].repeat(1, N) # B, N
outdesc1, outdesc2 = desc1[batchid, y1, x1], desc2[batchid, y2, x2] # B, N, D
# Padd with unused negatives
outdesc2 = self.add_negatives(outdesc2, desc2, batchid, x2, y2)
# Gather confs if needed
sel1 = batchid, y1, x1
sel2 = batchid, y2, x2
outconfs1, outconfs2 = self.get_confs(pred1, pred2, sel1, sel2)
return outdesc1, outdesc2, outconfs1, outconfs2, valid_matches, {'use_euclidean_dist': self.use_pts3d}
def blockwise_criterion(self, descs1, descs2, confs1, confs2, valid_matches, euc, rng=np.random, shuffle=True):
loss = None
details = {}
B, N, D = descs1.shape
if N <= self.blocksize: # Blocks are larger than provided descs, compute regular loss
loss = self.criterion(descs1, descs2, valid_matches, euc=euc)
else: # Compute criterion on the blockdiagonal only, after shuffling
# Shuffle if necessary
matches_perm = slice(None)
if shuffle:
matches_perm = np.stack([rng.choice(range(N), size=N, replace=False) for _ in range(B)])
batchid = torch.tile(torch.arange(B), (N, 1)).T
matches_perm = batchid, matches_perm
descs1 = descs1[matches_perm]
descs2 = descs2[matches_perm]
valid_matches = valid_matches[matches_perm]
assert N % self.blocksize == 0, "Error, can't chunk block-diagonal, please check blocksize"
n_chunks = N // self.blocksize
descs1 = descs1.reshape([B * n_chunks, self.blocksize, D]) # [B*(N//blocksize), blocksize, D]
descs2 = descs2.reshape([B * n_chunks, self.blocksize, D]) # [B*(N//blocksize), blocksize, D]
valid_matches = valid_matches.view([B * n_chunks, self.blocksize])
loss = self.criterion(descs1, descs2, valid_matches, euc=euc)
if self.withconf:
confs1, confs2 = map(lambda x: x[matches_perm], (confs1, confs2)) # apply perm to confidences if needed
if self.withconf:
# split confidences between positives/negatives for loss computation
details['conf_pos'] = map(lambda x: x[valid_matches.view(B, -1)], (confs1, confs2))
details['conf_neg'] = map(lambda x: x[~valid_matches.view(B, -1)], (confs1, confs2))
details['Conf1_std'] = confs1.std()
details['Conf2_std'] = confs2.std()
return loss, details
def compute_loss(self, gt1, gt2, pred1, pred2, **kw):
# Gather preds and GT
descs1, descs2, confs1, confs2, valid_matches, monitoring = self.get_matching_descs(
gt1, gt2, pred1, pred2, **kw)
# loss on matches
loss, details = self.blockwise_criterion(descs1, descs2, confs1, confs2,
valid_matches, euc=monitoring.pop('use_euclidean_dist', False))
details[type(self).__name__] = float(loss.mean())
return loss, (details | monitoring)
class ConfMatchingLoss(ConfLoss):
""" Weight matching by learned confidence. Same as ConfLoss but for a matching criterion
Assuming the input matching_loss is a match-level loss.
"""
def __init__(self, pixel_loss, alpha=1., confmode='prod', neg_conf_loss_quantile=False):
super().__init__(pixel_loss, alpha)
self.pixel_loss.withconf = True
self.confmode = confmode
self.neg_conf_loss_quantile = neg_conf_loss_quantile
def aggregate_confs(self, confs1, confs2): # get the confidences resulting from the two view predictions
if self.confmode == 'prod':
confs = confs1 * confs2 if confs1 is not None and confs2 is not None else 1.
elif self.confmode == 'mean':
confs = .5 * (confs1 + confs2) if confs1 is not None and confs2 is not None else 1.
else:
raise ValueError(f"Unknown conf mode {self.confmode}")
return confs
def compute_loss(self, gt1, gt2, pred1, pred2, **kw):
# compute per-pixel loss
loss, details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw)
# Recover confidences for positive and negative samples
conf1_pos, conf2_pos = details.pop('conf_pos')
conf1_neg, conf2_neg = details.pop('conf_neg')
conf_pos = self.aggregate_confs(conf1_pos, conf2_pos)
# weight Matching loss by confidence on positives
conf_pos, log_conf_pos = self.get_conf_log(conf_pos)
conf_loss = loss * conf_pos - self.alpha * log_conf_pos
# average + nan protection (in case of no valid pixels at all)
conf_loss = conf_loss.mean() if conf_loss.numel() > 0 else 0
# Add negative confs loss to give some supervision signal to confidences for pixels that are not matched in GT
if self.neg_conf_loss_quantile:
conf_neg = torch.cat([conf1_neg, conf2_neg])
conf_neg, log_conf_neg = self.get_conf_log(conf_neg)
# recover quantile that will be used for negatives loss value assignment
neg_loss_value = torch.quantile(loss, self.neg_conf_loss_quantile).detach()
neg_loss = neg_loss_value * conf_neg - self.alpha * log_conf_neg
neg_loss = neg_loss.mean() if neg_loss.numel() > 0 else 0
conf_loss = conf_loss + neg_loss
return conf_loss, dict(matching_conf_loss=float(conf_loss), **details)
|