File size: 17,179 Bytes
83ae704 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R to colmap export functions
# --------------------------------------------------------
import os
import torch
import copy
import numpy as np
import torchvision
import numpy as np
from tqdm import tqdm
from scipy.cluster.hierarchy import DisjointSet
from scipy.spatial.transform import Rotation as R
from mast3r.utils.misc import hash_md5
from mast3r.fast_nn import extract_correspondences_nonsym, bruteforce_reciprocal_nns
import mast3r.utils.path_to_dust3r # noqa
from dust3r.utils.geometry import find_reciprocal_matches, xy_grid # noqa
def convert_im_matches_pairs(img0, img1, image_to_colmap, im_keypoints, matches_im0, matches_im1, viz):
if viz:
from matplotlib import pyplot as pl
image_mean = torch.as_tensor(
[0.5, 0.5, 0.5], device='cpu').reshape(1, 3, 1, 1)
image_std = torch.as_tensor(
[0.5, 0.5, 0.5], device='cpu').reshape(1, 3, 1, 1)
rgb0 = img0['img'] * image_std + image_mean
rgb0 = torchvision.transforms.functional.to_pil_image(rgb0[0])
rgb0 = np.array(rgb0)
rgb1 = img1['img'] * image_std + image_mean
rgb1 = torchvision.transforms.functional.to_pil_image(rgb1[0])
rgb1 = np.array(rgb1)
imgs = [rgb0, rgb1]
# visualize a few matches
n_viz = 100
num_matches = matches_im0.shape[0]
match_idx_to_viz = np.round(np.linspace(
0, num_matches - 1, n_viz)).astype(int)
viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz]
H0, W0, H1, W1 = *imgs[0].shape[:2], *imgs[1].shape[:2]
rgb0 = np.pad(imgs[0], ((0, max(H1 - H0, 0)),
(0, 0), (0, 0)), 'constant', constant_values=0)
rgb1 = np.pad(imgs[1], ((0, max(H0 - H1, 0)),
(0, 0), (0, 0)), 'constant', constant_values=0)
img = np.concatenate((rgb0, rgb1), axis=1)
pl.figure()
pl.imshow(img)
cmap = pl.get_cmap('jet')
for ii in range(n_viz):
(x0, y0), (x1,
y1) = viz_matches_im0[ii].T, viz_matches_im1[ii].T
pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(ii /
(n_viz - 1)), scalex=False, scaley=False)
pl.show(block=True)
matches = [matches_im0.astype(np.float64), matches_im1.astype(np.float64)]
imgs = [img0, img1]
imidx0 = img0['idx']
imidx1 = img1['idx']
ravel_matches = []
for j in range(2):
H, W = imgs[j]['true_shape'][0]
with np.errstate(invalid='ignore'):
qx, qy = matches[j].round().astype(np.int32).T
ravel_matches_j = qx.clip(min=0, max=W - 1, out=qx) + W * qy.clip(min=0, max=H - 1, out=qy)
ravel_matches.append(ravel_matches_j)
imidxj = imgs[j]['idx']
for m in ravel_matches_j:
if m not in im_keypoints[imidxj]:
im_keypoints[imidxj][m] = 0
im_keypoints[imidxj][m] += 1
imid0 = copy.deepcopy(image_to_colmap[imidx0]['colmap_imid'])
imid1 = copy.deepcopy(image_to_colmap[imidx1]['colmap_imid'])
if imid0 > imid1:
colmap_matches = np.stack([ravel_matches[1], ravel_matches[0]], axis=-1)
imid0, imid1 = imid1, imid0
imidx0, imidx1 = imidx1, imidx0
else:
colmap_matches = np.stack([ravel_matches[0], ravel_matches[1]], axis=-1)
colmap_matches = np.unique(colmap_matches, axis=0)
return imidx0, imidx1, colmap_matches
def get_im_matches(pred1, pred2, pairs, image_to_colmap, im_keypoints, conf_thr,
is_sparse=True, subsample=8, pixel_tol=0, viz=False, device='cuda'):
im_matches = {}
for i in range(len(pred1['pts3d'])):
imidx0 = pairs[i][0]['idx']
imidx1 = pairs[i][1]['idx']
if 'desc' in pred1: # mast3r
descs = [pred1['desc'][i], pred2['desc'][i]]
confidences = [pred1['desc_conf'][i], pred2['desc_conf'][i]]
desc_dim = descs[0].shape[-1]
if is_sparse:
corres = extract_correspondences_nonsym(descs[0], descs[1], confidences[0], confidences[1],
device=device, subsample=subsample, pixel_tol=pixel_tol)
conf = corres[2]
mask = conf >= conf_thr
matches_im0 = corres[0][mask].cpu().numpy()
matches_im1 = corres[1][mask].cpu().numpy()
else:
confidence_masks = [confidences[0] >=
conf_thr, confidences[1] >= conf_thr]
pts2d_list, desc_list = [], []
for j in range(2):
conf_j = confidence_masks[j].cpu().numpy().flatten()
true_shape_j = pairs[i][j]['true_shape'][0]
pts2d_j = xy_grid(
true_shape_j[1], true_shape_j[0]).reshape(-1, 2)[conf_j]
desc_j = descs[j].detach().cpu(
).numpy().reshape(-1, desc_dim)[conf_j]
pts2d_list.append(pts2d_j)
desc_list.append(desc_j)
if len(desc_list[0]) == 0 or len(desc_list[1]) == 0:
continue
nn0, nn1 = bruteforce_reciprocal_nns(desc_list[0], desc_list[1],
device=device, dist='dot', block_size=2**13)
reciprocal_in_P0 = (nn1[nn0] == np.arange(len(nn0)))
matches_im1 = pts2d_list[1][nn0][reciprocal_in_P0]
matches_im0 = pts2d_list[0][reciprocal_in_P0]
else:
pts3d = [pred1['pts3d'][i], pred2['pts3d_in_other_view'][i]]
confidences = [pred1['conf'][i], pred2['conf'][i]]
if is_sparse:
corres = extract_correspondences_nonsym(pts3d[0], pts3d[1], confidences[0], confidences[1],
device=device, subsample=subsample, pixel_tol=pixel_tol,
ptmap_key='3d')
conf = corres[2]
mask = conf >= conf_thr
matches_im0 = corres[0][mask].cpu().numpy()
matches_im1 = corres[1][mask].cpu().numpy()
else:
confidence_masks = [confidences[0] >=
conf_thr, confidences[1] >= conf_thr]
# find 2D-2D matches between the two images
pts2d_list, pts3d_list = [], []
for j in range(2):
conf_j = confidence_masks[j].cpu().numpy().flatten()
true_shape_j = pairs[i][j]['true_shape'][0]
pts2d_j = xy_grid(true_shape_j[1], true_shape_j[0]).reshape(-1, 2)[conf_j]
pts3d_j = pts3d[j].detach().cpu().numpy().reshape(-1, 3)[conf_j]
pts2d_list.append(pts2d_j)
pts3d_list.append(pts3d_j)
PQ, PM = pts3d_list[0], pts3d_list[1]
if len(PQ) == 0 or len(PM) == 0:
continue
reciprocal_in_PM, nnM_in_PQ, num_matches = find_reciprocal_matches(
PQ, PM)
matches_im1 = pts2d_list[1][reciprocal_in_PM]
matches_im0 = pts2d_list[0][nnM_in_PQ][reciprocal_in_PM]
if len(matches_im0) == 0:
continue
imidx0, imidx1, colmap_matches = convert_im_matches_pairs(pairs[i][0], pairs[i][1],
image_to_colmap, im_keypoints,
matches_im0, matches_im1, viz)
im_matches[(imidx0, imidx1)] = colmap_matches
return im_matches
def get_im_matches_from_cache(pairs, cache_path, desc_conf, subsample,
image_to_colmap, im_keypoints, conf_thr,
viz=False, device='cuda'):
im_matches = {}
for i in range(len(pairs)):
imidx0 = pairs[i][0]['idx']
imidx1 = pairs[i][1]['idx']
corres_idx1 = hash_md5(pairs[i][0]['instance'])
corres_idx2 = hash_md5(pairs[i][1]['instance'])
path_corres = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{corres_idx1}-{corres_idx2}.pth'
if os.path.isfile(path_corres):
score, (xy1, xy2, confs) = torch.load(path_corres, map_location=device)
else:
path_corres = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{corres_idx2}-{corres_idx1}.pth'
score, (xy2, xy1, confs) = torch.load(path_corres, map_location=device)
mask = confs >= conf_thr
matches_im0 = xy1[mask].cpu().numpy()
matches_im1 = xy2[mask].cpu().numpy()
if len(matches_im0) == 0:
continue
imidx0, imidx1, colmap_matches = convert_im_matches_pairs(pairs[i][0], pairs[i][1],
image_to_colmap, im_keypoints,
matches_im0, matches_im1, viz)
im_matches[(imidx0, imidx1)] = colmap_matches
return im_matches
def export_images(db, images, image_paths, focals, ga_world_to_cam, camera_model):
# add cameras/images to the db
# with the output of ga as prior
image_to_colmap = {}
im_keypoints = {}
for idx in range(len(image_paths)):
im_keypoints[idx] = {}
H, W = images[idx]["orig_shape"]
if focals is None:
focal_x = focal_y = 1.2 * max(W, H)
prior_focal_length = False
cx = W / 2.0
cy = H / 2.0
elif isinstance(focals[idx], np.ndarray) and len(focals[idx].shape) == 2:
# intrinsics
focal_x = focals[idx][0, 0]
focal_y = focals[idx][1, 1]
cx = focals[idx][0, 2] * images[idx]["to_orig"][0, 0]
cy = focals[idx][1, 2] * images[idx]["to_orig"][1, 1]
prior_focal_length = True
else:
focal_x = focal_y = float(focals[idx])
prior_focal_length = True
cx = W / 2.0
cy = H / 2.0
focal_x = focal_x * images[idx]["to_orig"][0, 0]
focal_y = focal_y * images[idx]["to_orig"][1, 1]
if camera_model == "SIMPLE_PINHOLE":
model_id = 0
focal = (focal_x + focal_y) / 2.0
params = np.asarray([focal, cx, cy], np.float64)
elif camera_model == "PINHOLE":
model_id = 1
params = np.asarray([focal_x, focal_y, cx, cy], np.float64)
elif camera_model == "SIMPLE_RADIAL":
model_id = 2
focal = (focal_x + focal_y) / 2.0
params = np.asarray([focal, cx, cy, 0.0], np.float64)
elif camera_model == "OPENCV":
model_id = 4
params = np.asarray([focal_x, focal_y, cx, cy, 0.0, 0.0, 0.0, 0.0], np.float64)
else:
raise ValueError(f"invalid camera model {camera_model}")
H, W = int(H), int(W)
# OPENCV camera model
camid = db.add_camera(
model_id, W, H, params, prior_focal_length=prior_focal_length)
if ga_world_to_cam is None:
prior_t = np.zeros(3)
prior_q = np.zeros(4)
else:
q = R.from_matrix(ga_world_to_cam[idx][:3, :3]).as_quat()
prior_t = ga_world_to_cam[idx][:3, 3]
prior_q = np.array([q[-1], q[0], q[1], q[2]])
imid = db.add_image(
image_paths[idx], camid, prior_q=prior_q, prior_t=prior_t)
image_to_colmap[idx] = {
'colmap_imid': imid,
'colmap_camid': camid
}
return image_to_colmap, im_keypoints
def export_matches(db, images, image_to_colmap, im_keypoints, im_matches, min_len_track, skip_geometric_verification):
colmap_image_pairs = []
# 2D-2D are quite dense
# we want to remove the very small tracks
# and export only kpt for which we have values
# build tracks
print("building tracks")
keypoints_to_track_id = {}
track_id_to_kpt_list = []
to_merge = []
for (imidx0, imidx1), colmap_matches in tqdm(im_matches.items()):
if imidx0 not in keypoints_to_track_id:
keypoints_to_track_id[imidx0] = {}
if imidx1 not in keypoints_to_track_id:
keypoints_to_track_id[imidx1] = {}
for m in colmap_matches:
if m[0] not in keypoints_to_track_id[imidx0] and m[1] not in keypoints_to_track_id[imidx1]:
# new pair of kpts never seen before
track_idx = len(track_id_to_kpt_list)
keypoints_to_track_id[imidx0][m[0]] = track_idx
keypoints_to_track_id[imidx1][m[1]] = track_idx
track_id_to_kpt_list.append(
[(imidx0, m[0]), (imidx1, m[1])])
elif m[1] not in keypoints_to_track_id[imidx1]:
# 0 has a track, not 1
track_idx = keypoints_to_track_id[imidx0][m[0]]
keypoints_to_track_id[imidx1][m[1]] = track_idx
track_id_to_kpt_list[track_idx].append((imidx1, m[1]))
elif m[0] not in keypoints_to_track_id[imidx0]:
# 1 has a track, not 0
track_idx = keypoints_to_track_id[imidx1][m[1]]
keypoints_to_track_id[imidx0][m[0]] = track_idx
track_id_to_kpt_list[track_idx].append((imidx0, m[0]))
else:
# both have tracks, merge them
track_idx0 = keypoints_to_track_id[imidx0][m[0]]
track_idx1 = keypoints_to_track_id[imidx1][m[1]]
if track_idx0 != track_idx1:
# let's deal with them later
to_merge.append((track_idx0, track_idx1))
# regroup merge targets
print("merging tracks")
unique = np.unique(to_merge)
tree = DisjointSet(unique)
for track_idx0, track_idx1 in tqdm(to_merge):
tree.merge(track_idx0, track_idx1)
subsets = tree.subsets()
print("applying merge")
for setvals in tqdm(subsets):
new_trackid = len(track_id_to_kpt_list)
kpt_list = []
for track_idx in setvals:
kpt_list.extend(track_id_to_kpt_list[track_idx])
for imidx, kpid in track_id_to_kpt_list[track_idx]:
keypoints_to_track_id[imidx][kpid] = new_trackid
track_id_to_kpt_list.append(kpt_list)
# binc = np.bincount([len(v) for v in track_id_to_kpt_list])
# nonzero = np.nonzero(binc)
# nonzerobinc = binc[nonzero[0]]
# print(nonzero[0].tolist())
# print(nonzerobinc)
num_valid_tracks = sum(
[1 for v in track_id_to_kpt_list if len(v) >= min_len_track])
keypoints_to_idx = {}
print(f"squashing keypoints - {num_valid_tracks} valid tracks")
for imidx, keypoints_imid in tqdm(im_keypoints.items()):
imid = image_to_colmap[imidx]['colmap_imid']
keypoints_kept = []
keypoints_to_idx[imidx] = {}
for kp in keypoints_imid.keys():
if kp not in keypoints_to_track_id[imidx]:
continue
track_idx = keypoints_to_track_id[imidx][kp]
track_length = len(track_id_to_kpt_list[track_idx])
if track_length < min_len_track:
continue
keypoints_to_idx[imidx][kp] = len(keypoints_kept)
keypoints_kept.append(kp)
if len(keypoints_kept) == 0:
continue
keypoints_kept = np.array(keypoints_kept)
keypoints_kept = np.unravel_index(keypoints_kept, images[imidx]['true_shape'][0])[
0].base[:, ::-1].copy().astype(np.float32)
# rescale coordinates
keypoints_kept[:, 0] += 0.5
keypoints_kept[:, 1] += 0.5
keypoints_kept = geotrf(images[imidx]['to_orig'], keypoints_kept, norm=True)
H, W = images[imidx]['orig_shape']
keypoints_kept[:, 0] = keypoints_kept[:, 0].clip(min=0, max=W - 0.01)
keypoints_kept[:, 1] = keypoints_kept[:, 1].clip(min=0, max=H - 0.01)
db.add_keypoints(imid, keypoints_kept)
print("exporting im_matches")
for (imidx0, imidx1), colmap_matches in im_matches.items():
imid0, imid1 = image_to_colmap[imidx0]['colmap_imid'], image_to_colmap[imidx1]['colmap_imid']
assert imid0 < imid1
final_matches = np.array([[keypoints_to_idx[imidx0][m[0]], keypoints_to_idx[imidx1][m[1]]]
for m in colmap_matches
if m[0] in keypoints_to_idx[imidx0] and m[1] in keypoints_to_idx[imidx1]])
if len(final_matches) > 0:
colmap_image_pairs.append(
(images[imidx0]['instance'], images[imidx1]['instance']))
db.add_matches(imid0, imid1, final_matches)
if skip_geometric_verification:
db.add_two_view_geometry(imid0, imid1, final_matches)
return colmap_image_pairs
|