File size: 42,286 Bytes
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6bc02
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2404f
 
83ae704
 
7a6bc02
 
 
83ae704
 
 
 
 
 
 
 
 
 
 
7a6bc02
83ae704
7a6bc02
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6bc02
 
 
 
 
 
 
 
 
 
 
 
 
83ae704
 
 
7a6bc02
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6bc02
 
 
 
 
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6bc02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83ae704
 
 
 
7a6bc02
15cb3c1
 
7a6bc02
cc2404f
7a6bc02
 
 
83ae704
 
 
 
 
 
 
 
 
7a6bc02
83ae704
 
7a6bc02
 
 
83ae704
7a6bc02
 
 
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6bc02
83ae704
 
7a6bc02
83ae704
 
 
 
7a6bc02
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6bc02
 
 
 
 
 
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15cb3c1
 
83ae704
 
 
 
 
 
 
15cb3c1
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2404f
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2404f
 
 
 
 
 
 
 
 
 
83ae704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R Sparse Global Alignement
# --------------------------------------------------------
from tqdm import tqdm
import roma
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
from collections import namedtuple
from functools import lru_cache
from scipy import sparse as sp

from mast3r.utils.misc import mkdir_for, hash_md5
from mast3r.cloud_opt.utils.losses import gamma_loss
from mast3r.cloud_opt.utils.schedules import linear_schedule, cosine_schedule
from mast3r.fast_nn import fast_reciprocal_NNs, merge_corres

import mast3r.utils.path_to_dust3r  # noqa
from dust3r.utils.geometry import inv, geotrf  # noqa
from dust3r.utils.device import to_cpu, to_numpy, todevice  # noqa
from dust3r.post_process import estimate_focal_knowing_depth  # noqa
from dust3r.optim_factory import adjust_learning_rate_by_lr  # noqa
from dust3r.cloud_opt.base_opt import clean_pointcloud
from dust3r.viz import SceneViz


class SparseGA():
    def __init__(self, img_paths, pairs_in, res_fine, anchors, canonical_paths=None):
        def fetch_img(im):
            def torgb(x): return (x[0].permute(1, 2, 0).numpy() * .5 + .5).clip(min=0., max=1.)
            for im1, im2 in pairs_in:
                if im1['instance'] == im:
                    return torgb(im1['img'])
                if im2['instance'] == im:
                    return torgb(im2['img'])
        self.canonical_paths = canonical_paths
        self.img_paths = img_paths
        self.imgs = [fetch_img(img) for img in img_paths]
        self.intrinsics = res_fine['intrinsics']
        self.cam2w = res_fine['cam2w']
        self.depthmaps = res_fine['depthmaps']
        self.pts3d = res_fine['pts3d']
        self.pts3d_colors = []
        self.working_device = self.cam2w.device
        for i in range(len(self.imgs)):
            im = self.imgs[i]
            x, y = anchors[i][0][..., :2].detach().cpu().numpy().T
            self.pts3d_colors.append(im[y, x])
            assert self.pts3d_colors[-1].shape == self.pts3d[i].shape
        self.n_imgs = len(self.imgs)

    def get_focals(self):
        return torch.tensor([ff[0, 0] for ff in self.intrinsics]).to(self.working_device)

    def get_principal_points(self):
        return torch.stack([ff[:2, -1] for ff in self.intrinsics]).to(self.working_device)

    def get_im_poses(self):
        return self.cam2w

    def get_sparse_pts3d(self):
        return self.pts3d

    def get_dense_pts3d(self, clean_depth=True, subsample=8):
        assert self.canonical_paths, 'cache_path is required for dense 3d points'
        device = self.cam2w.device
        confs = []
        base_focals = []
        anchors = {}
        for i, canon_path in enumerate(self.canonical_paths):
            (canon, canon2, conf), focal = torch.load(canon_path, map_location=device)
            confs.append(conf)
            base_focals.append(focal)

            H, W = conf.shape
            pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device)
            idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample)
            anchors[i] = (pixels, idxs[i], offsets[i])

        # densify sparse depthmaps
        pts3d, depthmaps = make_pts3d(anchors, self.intrinsics, self.cam2w, [
                                      d.ravel() for d in self.depthmaps], base_focals=base_focals, ret_depth=True)

        if clean_depth:
            confs = clean_pointcloud(confs, self.intrinsics, inv(self.cam2w), depthmaps, pts3d)

        return pts3d, depthmaps, confs

    def get_pts3d_colors(self):
        return self.pts3d_colors

    def get_depthmaps(self):
        return self.depthmaps

    def get_masks(self):
        return [slice(None, None) for _ in range(len(self.imgs))]

    def show(self, show_cams=True):
        pts3d, _, confs = self.get_dense_pts3d()
        show_reconstruction(self.imgs, self.intrinsics if show_cams else None, self.cam2w,
                            [p.clip(min=-50, max=50) for p in pts3d],
                            masks=[c > 1 for c in confs])


def convert_dust3r_pairs_naming(imgs, pairs_in):
    for pair_id in range(len(pairs_in)):
        for i in range(2):
            pairs_in[pair_id][i]['instance'] = imgs[pairs_in[pair_id][i]['idx']]
    return pairs_in


def sparse_global_alignment(imgs, pairs_in, cache_path, model, subsample=8, desc_conf='desc_conf',
                            device='cuda', dtype=torch.float32, shared_intrinsics=False, **kw):
    """ Sparse alignment with MASt3R
        imgs: list of image paths
        cache_path: path where to dump temporary files (str)

        lr1, niter1: learning rate and #iterations for coarse global alignment (3D matching)
        lr2, niter2: learning rate and #iterations for refinement (2D reproj error)

        lora_depth: smart dimensionality reduction with depthmaps
    """
    # Convert pair naming convention from dust3r to mast3r
    pairs_in = convert_dust3r_pairs_naming(imgs, pairs_in)
    # forward pass
    pairs, cache_path = forward_mast3r(pairs_in, model,
                                       cache_path=cache_path, subsample=subsample,
                                       desc_conf=desc_conf, device=device)

    # extract canonical pointmaps
    tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21 = \
        prepare_canonical_data(imgs, pairs, subsample, cache_path=cache_path, mode='avg-angle', device=device)

    # compute minimal spanning tree
    mst = compute_min_spanning_tree(pairwise_scores)

    # remove all edges not in the spanning tree?
    # min_spanning_tree = {(imgs[i],imgs[j]) for i,j in mst[1]}
    # tmp_pairs = {(a,b):v for (a,b),v in tmp_pairs.items() if {(a,b),(b,a)} & min_spanning_tree}

    # smartly combine all usefull data
    imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21 = \
        condense_data(imgs, tmp_pairs, canonical_views, preds_21, dtype)

    imgs, res_coarse, res_fine = sparse_scene_optimizer(
        imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21, canonical_paths, mst,
        shared_intrinsics=shared_intrinsics, cache_path=cache_path, device=device, dtype=dtype, **kw)

    return SparseGA(imgs, pairs_in, res_fine or res_coarse, anchors, canonical_paths)


def sparse_scene_optimizer(imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d,
                           preds_21, canonical_paths, mst, cache_path,
                           lr1=0.2, niter1=500, loss1=gamma_loss(1.1),
                           lr2=0.02, niter2=500, loss2=gamma_loss(0.4),
                           lossd=gamma_loss(1.1),
                           opt_pp=True, opt_depth=True,
                           schedule=cosine_schedule, depth_mode='add', exp_depth=False,
                           lora_depth=False,  # dict(k=96, gamma=15, min_norm=.5),
                           shared_intrinsics=False,
                           init={}, device='cuda', dtype=torch.float32,
                           matching_conf_thr=5., loss_dust3r_w=0.01,
                           verbose=True, dbg=()):

    # extrinsic parameters
    vec0001 = torch.tensor((0, 0, 0, 1), dtype=dtype, device=device)
    quats = [nn.Parameter(vec0001.clone()) for _ in range(len(imgs))]
    trans = [nn.Parameter(torch.zeros(3, device=device, dtype=dtype)) for _ in range(len(imgs))]

    # intialize
    ones = torch.ones((len(imgs), 1), device=device, dtype=dtype)
    median_depths = torch.ones(len(imgs), device=device, dtype=dtype)
    for img in imgs:
        idx = imgs.index(img)
        init_values = init.setdefault(img, {})
        if verbose and init_values:
            print(f' >> initializing img=...{img[-25:]} [{idx}] for {set(init_values)}')

        K = init_values.get('intrinsics')
        if K is not None:
            K = K.detach()
            focal = K[:2, :2].diag().mean()
            pp = K[:2, 2]
            base_focals[idx] = focal
            pps[idx] = pp
        pps[idx] /= imsizes[idx]  # default principal_point would be (0.5, 0.5)

        depth = init_values.get('depthmap')
        if depth is not None:
            core_depth[idx] = depth.detach()

        median_depths[idx] = med_depth = core_depth[idx].median()
        core_depth[idx] /= med_depth

        cam2w = init_values.get('cam2w')
        if cam2w is not None:
            rot = cam2w[:3, :3].detach()
            cam_center = cam2w[:3, 3].detach()
            quats[idx].data[:] = roma.rotmat_to_unitquat(rot)
            trans_offset = med_depth * torch.cat((imsizes[idx] / base_focals[idx] * (0.5 - pps[idx]), ones[:1, 0]))
            trans[idx].data[:] = cam_center + rot @ trans_offset
            del rot
            assert False, 'inverse kinematic chain not yet implemented'

    # intrinsics parameters
    if shared_intrinsics:
        # Optimize a single set of intrinsics for all cameras. Use averages as init.
        confs = torch.stack([torch.load(pth)[0][2].mean() for pth in canonical_paths]).to(pps)
        weighting = confs / confs.sum()
        pp = nn.Parameter((weighting @ pps).to(dtype))
        pps = [pp for _ in range(len(imgs))]
        focal_m = weighting @ base_focals
        log_focal = nn.Parameter(focal_m.view(1).log().to(dtype))
        log_focals = [log_focal for _ in range(len(imgs))]
    else:
        pps = [nn.Parameter(pp.to(dtype)) for pp in pps]
        log_focals = [nn.Parameter(f.view(1).log().to(dtype)) for f in base_focals]

    diags = imsizes.float().norm(dim=1)
    min_focals = 0.25 * diags  # diag = 1.2~1.4*max(W,H) => beta >= 1/(2*1.2*tan(fov/2)) ~= 0.26
    max_focals = 10 * diags

    assert len(mst[1]) == len(pps) - 1

    def make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth):
        # make intrinsics
        focals = torch.cat(log_focals).exp().clip(min=min_focals, max=max_focals)
        pps = torch.stack(pps)
        K = torch.eye(3, dtype=dtype, device=device)[None].expand(len(imgs), 3, 3).clone()
        K[:, 0, 0] = K[:, 1, 1] = focals
        K[:, 0:2, 2] = pps * imsizes
        if trans is None:
            return K

        # security! optimization is always trying to crush the scale down
        sizes = torch.cat(log_sizes).exp()
        global_scaling = 1 / sizes.min()

        # compute distance of camera to focal plane
        # tan(fov) = W/2 / focal
        z_cameras = sizes * median_depths * focals / base_focals

        # make extrinsic
        rel_cam2cam = torch.eye(4, dtype=dtype, device=device)[None].expand(len(imgs), 4, 4).clone()
        rel_cam2cam[:, :3, :3] = roma.unitquat_to_rotmat(F.normalize(torch.stack(quats), dim=1))
        rel_cam2cam[:, :3, 3] = torch.stack(trans)

        # camera are defined as a kinematic chain
        tmp_cam2w = [None] * len(K)
        tmp_cam2w[mst[0]] = rel_cam2cam[mst[0]]
        for i, j in mst[1]:
            # i is the cam_i_to_world reference, j is the relative pose = cam_j_to_cam_i
            tmp_cam2w[j] = tmp_cam2w[i] @ rel_cam2cam[j]
        tmp_cam2w = torch.stack(tmp_cam2w)

        # smart reparameterizaton of cameras
        trans_offset = z_cameras.unsqueeze(1) * torch.cat((imsizes / focals.unsqueeze(1) * (0.5 - pps), ones), dim=-1)
        new_trans = global_scaling * (tmp_cam2w[:, :3, 3:4] - tmp_cam2w[:, :3, :3] @ trans_offset.unsqueeze(-1))
        cam2w = torch.cat((torch.cat((tmp_cam2w[:, :3, :3], new_trans), dim=2),
                          vec0001.view(1, 1, 4).expand(len(K), 1, 4)), dim=1)

        depthmaps = []
        for i in range(len(imgs)):
            core_depth_img = core_depth[i]
            if exp_depth:
                core_depth_img = core_depth_img.exp()
            if lora_depth:  # compute core_depth as a low-rank decomposition of 3d points
                core_depth_img = lora_depth_proj[i] @ core_depth_img
            if depth_mode == 'add':
                core_depth_img = z_cameras[i] + (core_depth_img - 1) * (median_depths[i] * sizes[i])
            elif depth_mode == 'mul':
                core_depth_img = z_cameras[i] * core_depth_img
            else:
                raise ValueError(f'Bad {depth_mode=}')
            depthmaps.append(global_scaling * core_depth_img)

        return K, (inv(cam2w), cam2w), depthmaps

    K = make_K_cam_depth(log_focals, pps, None, None, None, None)

    if shared_intrinsics:
        print('init focal (shared) = ', to_numpy(K[0, 0, 0]).round(2))
    else:
        print('init focals =', to_numpy(K[:, 0, 0]))

    # spectral low-rank projection of depthmaps
    if lora_depth:
        core_depth, lora_depth_proj = spectral_projection_of_depthmaps(
            imgs, K, core_depth, subsample, cache_path=cache_path, **lora_depth)
    if exp_depth:
        core_depth = [d.clip(min=1e-4).log() for d in core_depth]
    core_depth = [nn.Parameter(d.ravel().to(dtype)) for d in core_depth]
    log_sizes = [nn.Parameter(torch.zeros(1, dtype=dtype, device=device)) for _ in range(len(imgs))]

    # Fetch img slices
    _, confs_sum, imgs_slices = corres

    # Define which pairs are fine to use with matching
    def matching_check(x): return x.max() > matching_conf_thr
    is_matching_ok = {}
    for s in imgs_slices:
        is_matching_ok[s.img1, s.img2] = matching_check(s.confs)

    # Prepare slices and corres for losses
    dust3r_slices = [s for s in imgs_slices if not is_matching_ok[s.img1, s.img2]]
    loss3d_slices = [s for s in imgs_slices if is_matching_ok[s.img1, s.img2]]
    cleaned_corres2d = []
    for cci, (img1, pix1, confs, confsum, imgs_slices) in enumerate(corres2d):
        cf_sum = 0
        pix1_filtered = []
        confs_filtered = []
        curstep = 0
        cleaned_slices = []
        for img2, slice2 in imgs_slices:
            if is_matching_ok[img1, img2]:
                tslice = slice(curstep, curstep + slice2.stop - slice2.start, slice2.step)
                pix1_filtered.append(pix1[tslice])
                confs_filtered.append(confs[tslice])
                cleaned_slices.append((img2, slice2))
            curstep += slice2.stop - slice2.start
        if pix1_filtered != []:
            pix1_filtered = torch.cat(pix1_filtered)
            confs_filtered = torch.cat(confs_filtered)
            cf_sum = confs_filtered.sum()
        cleaned_corres2d.append((img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices))

    def loss_dust3r(cam2w, pts3d, pix_loss):
        # In the case no correspondence could be established, fallback to DUSt3R GA regression loss formulation (sparsified)
        loss = 0.
        cf_sum = 0.
        for s in dust3r_slices:
            if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'):
                continue
            # fallback to dust3r regression
            tgt_pts, tgt_confs = preds_21[imgs[s.img2]][imgs[s.img1]]
            tgt_pts = geotrf(cam2w[s.img2], tgt_pts)
            cf_sum += tgt_confs.sum()
            loss += tgt_confs @ pix_loss(pts3d[s.img1], tgt_pts)
        return loss / cf_sum if cf_sum != 0. else 0.

    def loss_3d(K, w2cam, pts3d, pix_loss):
        # For each correspondence, we have two 3D points (one for each image of the pair).
        # For each 3D point, we have 2 reproj errors
        if any(v.get('freeze') for v in init.values()):
            pts3d_1 = []
            pts3d_2 = []
            confs = []
            for s in loss3d_slices:
                if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'):
                    continue
                pts3d_1.append(pts3d[s.img1][s.slice1])
                pts3d_2.append(pts3d[s.img2][s.slice2])
                confs.append(s.confs)
        else:
            pts3d_1 = [pts3d[s.img1][s.slice1] for s in loss3d_slices]
            pts3d_2 = [pts3d[s.img2][s.slice2] for s in loss3d_slices]
            confs = [s.confs for s in loss3d_slices]

        if pts3d_1 != []:
            confs = torch.cat(confs)
            pts3d_1 = torch.cat(pts3d_1)
            pts3d_2 = torch.cat(pts3d_2)
            loss = confs @ pix_loss(pts3d_1, pts3d_2)
            cf_sum = confs.sum()
        else:
            loss = 0.
            cf_sum = 1.

        return loss / cf_sum

    def loss_2d(K, w2cam, pts3d, pix_loss):
        # For each correspondence, we have two 3D points (one for each image of the pair).
        # For each 3D point, we have 2 reproj errors
        proj_matrix = K @ w2cam[:, :3]
        loss = npix = 0
        for img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices in cleaned_corres2d:
            if init[imgs[img1]].get('freeze', 0) >= 1:
                continue  # no need
            pts3d_in_img1 = [pts3d[img2][slice2] for img2, slice2 in cleaned_slices]
            if pts3d_in_img1 != []:
                pts3d_in_img1 = torch.cat(pts3d_in_img1)
                loss += confs_filtered @ pix_loss(pix1_filtered, reproj2d(proj_matrix[img1], pts3d_in_img1))
                npix += confs_filtered.sum()

        return loss / npix if npix != 0 else 0.

    def optimize_loop(loss_func, lr_base, niter, pix_loss, lr_end=0):
        # create optimizer
        params = pps + log_focals + quats + trans + log_sizes + core_depth
        optimizer = torch.optim.Adam(params, lr=1, weight_decay=0, betas=(0.9, 0.9))
        ploss = pix_loss if 'meta' in repr(pix_loss) else (lambda a: pix_loss)

        with tqdm(total=niter) as bar:
            for iter in range(niter or 1):
                K, (w2cam, cam2w), depthmaps = make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth)
                pts3d = make_pts3d(anchors, K, cam2w, depthmaps, base_focals=base_focals)
                if niter == 0:
                    break

                alpha = (iter / niter)
                lr = schedule(alpha, lr_base, lr_end)
                adjust_learning_rate_by_lr(optimizer, lr)
                pix_loss = ploss(1 - alpha)
                optimizer.zero_grad()
                loss = loss_func(K, w2cam, pts3d, pix_loss) + loss_dust3r_w * loss_dust3r(cam2w, pts3d, lossd)
                loss.backward()
                optimizer.step()

                # make sure the pose remains well optimizable
                for i in range(len(imgs)):
                    quats[i].data[:] /= quats[i].data.norm()

                loss = float(loss)
                if loss != loss:
                    break  # NaN loss
                bar.set_postfix_str(f'{lr=:.4f}, {loss=:.3f}')
                bar.update(1)

        if niter:
            print(f'>> final loss = {loss}')
        return dict(intrinsics=K.detach(), cam2w=cam2w.detach(),
                    depthmaps=[d.detach() for d in depthmaps], pts3d=[p.detach() for p in pts3d])

    # at start, don't optimize 3d points
    for i, img in enumerate(imgs):
        trainable = not (init[img].get('freeze'))
        pps[i].requires_grad_(False)
        log_focals[i].requires_grad_(False)
        quats[i].requires_grad_(trainable)
        trans[i].requires_grad_(trainable)
        log_sizes[i].requires_grad_(trainable)
        core_depth[i].requires_grad_(False)

    res_coarse = optimize_loop(loss_3d, lr_base=lr1, niter=niter1, pix_loss=loss1)

    res_fine = None
    if niter2:
        # now we can optimize 3d points
        for i, img in enumerate(imgs):
            if init[img].get('freeze', 0) >= 1:
                continue
            pps[i].requires_grad_(bool(opt_pp))
            log_focals[i].requires_grad_(True)
            core_depth[i].requires_grad_(opt_depth)

        # refinement with 2d reproj
        res_fine = optimize_loop(loss_2d, lr_base=lr2, niter=niter2, pix_loss=loss2)

    K = make_K_cam_depth(log_focals, pps, None, None, None, None)
    if shared_intrinsics:
        print('Final focal (shared) = ', to_numpy(K[0, 0, 0]).round(2))
    else:
        print('Final focals =', to_numpy(K[:, 0, 0]))

    return imgs, res_coarse, res_fine


@lru_cache
def mask110(device, dtype):
    return torch.tensor((1, 1, 0), device=device, dtype=dtype)


def proj3d(inv_K, pixels, z):
    if pixels.shape[-1] == 2:
        pixels = torch.cat((pixels, torch.ones_like(pixels[..., :1])), dim=-1)
    return z.unsqueeze(-1) * (pixels * inv_K.diag() + inv_K[:, 2] * mask110(z.device, z.dtype))


def make_pts3d(anchors, K, cam2w, depthmaps, base_focals=None, ret_depth=False):
    focals = K[:, 0, 0]
    invK = inv(K)
    all_pts3d = []
    depth_out = []

    for img, (pixels, idxs, offsets) in anchors.items():
        # from depthmaps to 3d points
        if base_focals is None:
            pass
        else:
            # compensate for focal
            # depth + depth * (offset - 1) * base_focal / focal
            # = depth * (1 + (offset - 1) * (base_focal / focal))
            offsets = 1 + (offsets - 1) * (base_focals[img] / focals[img])

        pts3d = proj3d(invK[img], pixels, depthmaps[img][idxs] * offsets)
        if ret_depth:
            depth_out.append(pts3d[..., 2])  # before camera rotation

        # rotate to world coordinate
        pts3d = geotrf(cam2w[img], pts3d)
        all_pts3d.append(pts3d)

    if ret_depth:
        return all_pts3d, depth_out
    return all_pts3d


def make_dense_pts3d(intrinsics, cam2w, depthmaps, canonical_paths, subsample, device='cuda'):
    base_focals = []
    anchors = {}
    confs = []
    for i, canon_path in enumerate(canonical_paths):
        (canon, canon2, conf), focal = torch.load(canon_path, map_location=device)
        confs.append(conf)
        base_focals.append(focal)
        H, W = conf.shape
        pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device)
        idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample)
        anchors[i] = (pixels, idxs[i], offsets[i])

    # densify sparse depthmaps
    pts3d, depthmaps_out = make_pts3d(anchors, intrinsics, cam2w, [
                                      d.ravel() for d in depthmaps], base_focals=base_focals, ret_depth=True)

    return pts3d, depthmaps_out, confs


@torch.no_grad()
def forward_mast3r(pairs, model, cache_path, desc_conf='desc_conf',
                   device='cuda', subsample=8, **matching_kw):
    res_paths = {}

    for img1, img2 in tqdm(pairs):
        idx1 = hash_md5(img1['instance'])
        idx2 = hash_md5(img2['instance'])

        path1 = cache_path + f'/forward/{idx1}/{idx2}.pth'
        path2 = cache_path + f'/forward/{idx2}/{idx1}.pth'
        path_corres = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx1}-{idx2}.pth'
        path_corres2 = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx2}-{idx1}.pth'

        if os.path.isfile(path_corres2) and not os.path.isfile(path_corres):
            score, (xy1, xy2, confs) = torch.load(path_corres2)
            torch.save((score, (xy2, xy1, confs)), path_corres)

        if not all(os.path.isfile(p) for p in (path1, path2, path_corres)):
            if model is None:
                continue
            res = symmetric_inference(model, img1, img2, device=device)
            X11, X21, X22, X12 = [r['pts3d'][0] for r in res]
            C11, C21, C22, C12 = [r['conf'][0] for r in res]
            descs = [r['desc'][0] for r in res]
            qonfs = [r[desc_conf][0] for r in res]

            # save
            torch.save(to_cpu((X11, C11, X21, C21)), mkdir_for(path1))
            torch.save(to_cpu((X22, C22, X12, C12)), mkdir_for(path2))

            # perform reciprocal matching
            corres = extract_correspondences(descs, qonfs, device=device, subsample=subsample)

            conf_score = (C11.mean() * C12.mean() * C21.mean() * C22.mean()).sqrt().sqrt()
            matching_score = (float(conf_score), float(corres[2].sum()), len(corres[2]))
            if cache_path is not None:
                torch.save((matching_score, corres), mkdir_for(path_corres))

        res_paths[img1['instance'], img2['instance']] = (path1, path2), path_corres

    del model
    torch.cuda.empty_cache()

    return res_paths, cache_path


def symmetric_inference(model, img1, img2, device):
    shape1 = torch.from_numpy(img1['true_shape']).to(device, non_blocking=True)
    shape2 = torch.from_numpy(img2['true_shape']).to(device, non_blocking=True)
    img1 = img1['img'].to(device, non_blocking=True)
    img2 = img2['img'].to(device, non_blocking=True)

    # compute encoder only once
    feat1, feat2, pos1, pos2 = model._encode_image_pairs(img1, img2, shape1, shape2)

    def decoder(feat1, feat2, pos1, pos2, shape1, shape2):
        dec1, dec2 = model._decoder(feat1, pos1, feat2, pos2)
        with torch.cuda.amp.autocast(enabled=False):
            res1 = model._downstream_head(1, [tok.float() for tok in dec1], shape1)
            res2 = model._downstream_head(2, [tok.float() for tok in dec2], shape2)
        return res1, res2

    # decoder 1-2
    res11, res21 = decoder(feat1, feat2, pos1, pos2, shape1, shape2)
    # decoder 2-1
    res22, res12 = decoder(feat2, feat1, pos2, pos1, shape2, shape1)

    return (res11, res21, res22, res12)


def extract_correspondences(feats, qonfs, subsample=8, device=None, ptmap_key='pred_desc'):
    feat11, feat21, feat22, feat12 = feats
    qonf11, qonf21, qonf22, qonf12 = qonfs
    assert feat11.shape[:2] == feat12.shape[:2] == qonf11.shape == qonf12.shape
    assert feat21.shape[:2] == feat22.shape[:2] == qonf21.shape == qonf22.shape

    if '3d' in ptmap_key:
        opt = dict(device='cpu', workers=32)
    else:
        opt = dict(device=device, dist='dot', block_size=2**13)

    # matching the two pairs
    idx1 = []
    idx2 = []
    qonf1 = []
    qonf2 = []
    # TODO add non symmetric / pixel_tol options
    for A, B, QA, QB in [(feat11, feat21, qonf11.cpu(), qonf21.cpu()),
                         (feat12, feat22, qonf12.cpu(), qonf22.cpu())]:
        nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt)
        nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt)

        idx1.append(np.r_[nn1to2[0], nn2to1[1]])
        idx2.append(np.r_[nn1to2[1], nn2to1[0]])
        qonf1.append(QA.ravel()[idx1[-1]])
        qonf2.append(QB.ravel()[idx2[-1]])

    # merge corres from opposite pairs
    H1, W1 = feat11.shape[:2]
    H2, W2 = feat22.shape[:2]
    cat = np.concatenate

    xy1, xy2, idx = merge_corres(cat(idx1), cat(idx2), (H1, W1), (H2, W2), ret_xy=True, ret_index=True)
    corres = (xy1.copy(), xy2.copy(), np.sqrt(cat(qonf1)[idx] * cat(qonf2)[idx]))

    return todevice(corres, device)


@torch.no_grad()
def prepare_canonical_data(imgs, tmp_pairs, subsample, order_imgs=False, min_conf_thr=0,
                           cache_path=None, device='cuda', **kw):
    canonical_views = {}
    pairwise_scores = torch.zeros((len(imgs), len(imgs)), device=device)
    canonical_paths = []
    preds_21 = {}

    for img in tqdm(imgs):
        if cache_path:
            cache = os.path.join(cache_path, 'canon_views', hash_md5(img) + f'_{subsample=}_{kw=}.pth')
            canonical_paths.append(cache)
        try:
            (canon, canon2, cconf), focal = torch.load(cache, map_location=device)
        except IOError:
            # cache does not exist yet, we create it!
            canon = focal = None

        # collect all pred1
        n_pairs = sum((img in pair) for pair in tmp_pairs)

        ptmaps11 = None
        pixels = {}
        n = 0
        for (img1, img2), ((path1, path2), path_corres) in tmp_pairs.items():
            score = None
            if img == img1:
                X, C, X2, C2 = torch.load(path1, map_location=device)
                score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr)
                pixels[img2] = xy1, confs
                if img not in preds_21:
                    preds_21[img] = {}
                # Subsample preds_21
                preds_21[img][img2] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel()

            if img == img2:
                X, C, X2, C2 = torch.load(path2, map_location=device)
                score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr)
                pixels[img1] = xy2, confs
                if img not in preds_21:
                    preds_21[img] = {}
                preds_21[img][img1] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel()

            if score is not None:
                i, j = imgs.index(img1), imgs.index(img2)
                # score = score[0]
                # score = np.log1p(score[2])
                score = score[2]
                pairwise_scores[i, j] = score
                pairwise_scores[j, i] = score

                if canon is not None:
                    continue
                if ptmaps11 is None:
                    H, W = C.shape
                    ptmaps11 = torch.empty((n_pairs, H, W, 3), device=device)
                    confs11 = torch.empty((n_pairs, H, W), device=device)

                ptmaps11[n] = X
                confs11[n] = C
                n += 1

        if canon is None:
            canon, canon2, cconf = canonical_view(ptmaps11, confs11, subsample, **kw)
            del ptmaps11
            del confs11

        # compute focals
        H, W = canon.shape[:2]
        pp = torch.tensor([W / 2, H / 2], device=device)
        if focal is None:
            focal = estimate_focal_knowing_depth(canon[None], pp, focal_mode='weiszfeld', min_focal=0.5, max_focal=3.5)
            if cache:
                torch.save(to_cpu(((canon, canon2, cconf), focal)), mkdir_for(cache))

        # extract depth offsets with correspondences
        core_depth = canon[subsample // 2::subsample, subsample // 2::subsample, 2]
        idxs, offsets = anchor_depth_offsets(canon2, pixels, subsample=subsample)

        canonical_views[img] = (pp, (H, W), focal.view(1), core_depth, pixels, idxs, offsets)

    return tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21


def load_corres(path_corres, device, min_conf_thr):
    score, (xy1, xy2, confs) = torch.load(path_corres, map_location=device)
    valid = confs > min_conf_thr if min_conf_thr else slice(None)
    # valid = (xy1 > 0).all(dim=1) & (xy2 > 0).all(dim=1) & (xy1 < 512).all(dim=1) & (xy2 < 512).all(dim=1)
    # print(f'keeping {valid.sum()} / {len(valid)} correspondences')
    return score, (xy1[valid], xy2[valid], confs[valid])


PairOfSlices = namedtuple(
    'ImgPair', 'img1, slice1, pix1, anchor_idxs1, img2, slice2, pix2, anchor_idxs2, confs, confs_sum')


def condense_data(imgs, tmp_paths, canonical_views, preds_21, dtype=torch.float32):
    # aggregate all data properly
    set_imgs = set(imgs)

    principal_points = []
    shapes = []
    focals = []
    core_depth = []
    img_anchors = {}
    tmp_pixels = {}

    for idx1, img1 in enumerate(imgs):
        # load stuff
        pp, shape, focal, anchors, pixels_confs, idxs, offsets = canonical_views[img1]

        principal_points.append(pp)
        shapes.append(shape)
        focals.append(focal)
        core_depth.append(anchors)

        img_uv1 = []
        img_idxs = []
        img_offs = []
        cur_n = [0]

        for img2, (pixels, match_confs) in pixels_confs.items():
            if img2 not in set_imgs:
                continue
            assert len(pixels) == len(idxs[img2]) == len(offsets[img2])
            img_uv1.append(torch.cat((pixels, torch.ones_like(pixels[:, :1])), dim=-1))
            img_idxs.append(idxs[img2])
            img_offs.append(offsets[img2])
            cur_n.append(cur_n[-1] + len(pixels))
            # store the position of 3d points
            tmp_pixels[img1, img2] = pixels.to(dtype), match_confs.to(dtype), slice(*cur_n[-2:])
        img_anchors[idx1] = (torch.cat(img_uv1), torch.cat(img_idxs), torch.cat(img_offs))

    all_confs = []
    imgs_slices = []
    corres2d = {img: [] for img in range(len(imgs))}

    for img1, img2 in tmp_paths:
        try:
            pix1, confs1, slice1 = tmp_pixels[img1, img2]
            pix2, confs2, slice2 = tmp_pixels[img2, img1]
        except KeyError:
            continue
        img1 = imgs.index(img1)
        img2 = imgs.index(img2)
        confs = (confs1 * confs2).sqrt()

        # prepare for loss_3d
        all_confs.append(confs)
        anchor_idxs1 = canonical_views[imgs[img1]][5][imgs[img2]]
        anchor_idxs2 = canonical_views[imgs[img2]][5][imgs[img1]]
        imgs_slices.append(PairOfSlices(img1, slice1, pix1, anchor_idxs1,
                                        img2, slice2, pix2, anchor_idxs2,
                                        confs, float(confs.sum())))

        # prepare for loss_2d
        corres2d[img1].append((pix1, confs, img2, slice2))
        corres2d[img2].append((pix2, confs, img1, slice1))

    all_confs = torch.cat(all_confs)
    corres = (all_confs, float(all_confs.sum()), imgs_slices)

    def aggreg_matches(img1, list_matches):
        pix1, confs, img2, slice2 = zip(*list_matches)
        all_pix1 = torch.cat(pix1).to(dtype)
        all_confs = torch.cat(confs).to(dtype)
        return img1, all_pix1, all_confs, float(all_confs.sum()), [(j, sl2) for j, sl2 in zip(img2, slice2)]
    corres2d = [aggreg_matches(img, m) for img, m in corres2d.items()]

    imsizes = torch.tensor([(W, H) for H, W in shapes], device=pp.device)  # (W,H)
    principal_points = torch.stack(principal_points)
    focals = torch.cat(focals)

    # Subsample preds_21
    subsamp_preds_21 = {}
    for imk, imv in preds_21.items():
        subsamp_preds_21[imk] = {}
        for im2k, (pred, conf) in preds_21[imk].items():
            idxs = img_anchors[imgs.index(im2k)][1]
            subsamp_preds_21[imk][im2k] = (pred[idxs], conf[idxs])  # anchors subsample

    return imsizes, principal_points, focals, core_depth, img_anchors, corres, corres2d, subsamp_preds_21


def canonical_view(ptmaps11, confs11, subsample, mode='avg-angle'):
    assert len(ptmaps11) == len(confs11) > 0, 'not a single view1 for img={i}'

    # canonical pointmap is just a weighted average
    confs11 = confs11.unsqueeze(-1) - 0.999
    canon = (confs11 * ptmaps11).sum(0) / confs11.sum(0)

    canon_depth = ptmaps11[..., 2].unsqueeze(1)
    S = slice(subsample // 2, None, subsample)
    center_depth = canon_depth[:, :, S, S]
    assert (center_depth > 0).all()
    stacked_depth = F.pixel_unshuffle(canon_depth, subsample)
    stacked_confs = F.pixel_unshuffle(confs11[:, None, :, :, 0], subsample)

    if mode == 'avg-reldepth':
        rel_depth = stacked_depth / center_depth
        stacked_canon = (stacked_confs * rel_depth).sum(dim=0) / stacked_confs.sum(dim=0)
        canon2 = F.pixel_shuffle(stacked_canon.unsqueeze(0), subsample).squeeze()

    elif mode == 'avg-angle':
        xy = ptmaps11[..., 0:2].permute(0, 3, 1, 2)
        stacked_xy = F.pixel_unshuffle(xy, subsample)
        B, _, H, W = stacked_xy.shape
        stacked_radius = (stacked_xy.view(B, 2, -1, H, W) - xy[:, :, None, S, S]).norm(dim=1)
        stacked_radius.clip_(min=1e-8)

        stacked_angle = torch.arctan((stacked_depth - center_depth) / stacked_radius)
        avg_angle = (stacked_confs * stacked_angle).sum(dim=0) / stacked_confs.sum(dim=0)

        # back to depth
        stacked_depth = stacked_radius.mean(dim=0) * torch.tan(avg_angle)

        canon2 = F.pixel_shuffle((1 + stacked_depth / canon[S, S, 2]).unsqueeze(0), subsample).squeeze()
    else:
        raise ValueError(f'bad {mode=}')

    confs = (confs11.square().sum(dim=0) / confs11.sum(dim=0)).squeeze()
    return canon, canon2, confs


def anchor_depth_offsets(canon_depth, pixels, subsample=8):
    device = canon_depth.device

    # create a 2D grid of anchor 3D points
    H1, W1 = canon_depth.shape
    yx = np.mgrid[subsample // 2:H1:subsample, subsample // 2:W1:subsample]
    H2, W2 = yx.shape[1:]
    cy, cx = yx.reshape(2, -1)
    core_depth = canon_depth[cy, cx]
    assert (core_depth > 0).all()

    # slave 3d points (attached to core 3d points)
    core_idxs = {}  # core_idxs[img2] = {corr_idx:core_idx}
    core_offs = {}  # core_offs[img2] = {corr_idx:3d_offset}

    for img2, (xy1, _confs) in pixels.items():
        px, py = xy1.long().T

        # find nearest anchor == block quantization
        core_idx = (py // subsample) * W2 + (px // subsample)
        core_idxs[img2] = core_idx.to(device)

        # compute relative depth offsets w.r.t. anchors
        ref_z = core_depth[core_idx]
        pts_z = canon_depth[py, px]
        offset = pts_z / ref_z
        core_offs[img2] = offset.detach().to(device)

    return core_idxs, core_offs


def spectral_clustering(graph, k=None, normalized_cuts=False):
    graph.fill_diagonal_(0)

    # graph laplacian
    degrees = graph.sum(dim=-1)
    laplacian = torch.diag(degrees) - graph
    if normalized_cuts:
        i_inv = torch.diag(degrees.sqrt().reciprocal())
        laplacian = i_inv @ laplacian @ i_inv

    # compute eigenvectors!
    eigval, eigvec = torch.linalg.eigh(laplacian)
    return eigval[:k], eigvec[:, :k]


def sim_func(p1, p2, gamma):
    diff = (p1 - p2).norm(dim=-1)
    avg_depth = (p1[:, :, 2] + p2[:, :, 2])
    rel_distance = diff / avg_depth
    sim = torch.exp(-gamma * rel_distance.square())
    return sim


def backproj(K, depthmap, subsample):
    H, W = depthmap.shape
    uv = np.mgrid[subsample // 2:subsample * W:subsample, subsample // 2:subsample * H:subsample].T.reshape(H, W, 2)
    xyz = depthmap.unsqueeze(-1) * geotrf(inv(K), todevice(uv, K.device), ncol=3)
    return xyz


def spectral_projection_depth(K, depthmap, subsample, k=64, cache_path='',
                              normalized_cuts=True, gamma=7, min_norm=5):
    try:
        if cache_path:
            cache_path = cache_path + f'_{k=}_norm={normalized_cuts}_{gamma=}.pth'
        lora_proj = torch.load(cache_path, map_location=K.device)

    except IOError:
        # reconstruct 3d points in camera coordinates
        xyz = backproj(K, depthmap, subsample)

        # compute all distances
        xyz = xyz.reshape(-1, 3)
        graph = sim_func(xyz[:, None], xyz[None, :], gamma=gamma)
        _, lora_proj = spectral_clustering(graph, k, normalized_cuts=normalized_cuts)

        if cache_path:
            torch.save(lora_proj.cpu(), mkdir_for(cache_path))

    lora_proj, coeffs = lora_encode_normed(lora_proj, depthmap.ravel(), min_norm=min_norm)

    # depthmap ~= lora_proj @ coeffs
    return coeffs, lora_proj


def lora_encode_normed(lora_proj, x, min_norm, global_norm=False):
    # encode the pointmap
    coeffs = torch.linalg.pinv(lora_proj) @ x

    # rectify the norm of basis vector to be ~ equal
    if coeffs.ndim == 1:
        coeffs = coeffs[:, None]
    if global_norm:
        lora_proj *= coeffs[1:].norm() * min_norm / coeffs.shape[1]
    elif min_norm:
        lora_proj *= coeffs.norm(dim=1).clip(min=min_norm)
    # can have rounding errors here!
    coeffs = (torch.linalg.pinv(lora_proj.double()) @ x.double()).float()

    return lora_proj.detach(), coeffs.detach()


@torch.no_grad()
def spectral_projection_of_depthmaps(imgs, intrinsics, depthmaps, subsample, cache_path=None, **kw):
    # recover 3d points
    core_depth = []
    lora_proj = []

    for i, img in enumerate(tqdm(imgs)):
        cache = os.path.join(cache_path, 'lora_depth', hash_md5(img)) if cache_path else None
        depth, proj = spectral_projection_depth(intrinsics[i], depthmaps[i], subsample,
                                                cache_path=cache, **kw)
        core_depth.append(depth)
        lora_proj.append(proj)

    return core_depth, lora_proj


def reproj2d(Trf, pts3d):
    res = (pts3d @ Trf[:3, :3].transpose(-1, -2)) + Trf[:3, 3]
    clipped_z = res[:, 2:3].clip(min=1e-3)  # make sure we don't have nans!
    uv = res[:, 0:2] / clipped_z
    return uv.clip(min=-1000, max=2000)


def bfs(tree, start_node):
    order, predecessors = sp.csgraph.breadth_first_order(tree, start_node, directed=False)
    ranks = np.arange(len(order))
    ranks[order] = ranks.copy()
    return ranks, predecessors


def compute_min_spanning_tree(pws):
    sparse_graph = sp.dok_array(pws.shape)
    for i, j in pws.nonzero().cpu().tolist():
        sparse_graph[i, j] = -float(pws[i, j])
    msp = sp.csgraph.minimum_spanning_tree(sparse_graph)

    # now reorder the oriented edges, starting from the central point
    ranks1, _ = bfs(msp, 0)
    ranks2, _ = bfs(msp, ranks1.argmax())
    ranks1, _ = bfs(msp, ranks2.argmax())
    # this is the point farther from any leaf
    root = np.minimum(ranks1, ranks2).argmax()

    # find the ordered list of edges that describe the tree
    order, predecessors = sp.csgraph.breadth_first_order(msp, root, directed=False)
    order = order[1:]  # root not do not have a predecessor
    edges = [(predecessors[i], i) for i in order]

    return root, edges


def show_reconstruction(shapes_or_imgs, K, cam2w, pts3d, gt_cam2w=None, gt_K=None, cam_size=None, masks=None, **kw):
    viz = SceneViz()

    cc = cam2w[:, :3, 3]
    cs = cam_size or float(torch.cdist(cc, cc).fill_diagonal_(np.inf).min(dim=0).values.median())
    colors = 64 + np.random.randint(255 - 64, size=(len(cam2w), 3))

    if isinstance(shapes_or_imgs, np.ndarray) and shapes_or_imgs.ndim == 2:
        cam_kws = dict(imsizes=shapes_or_imgs[:, ::-1], cam_size=cs)
    else:
        imgs = shapes_or_imgs
        cam_kws = dict(images=imgs, cam_size=cs)
    if K is not None:
        viz.add_cameras(to_numpy(cam2w), to_numpy(K), colors=colors, **cam_kws)

    if gt_cam2w is not None:
        if gt_K is None:
            gt_K = K
        viz.add_cameras(to_numpy(gt_cam2w), to_numpy(gt_K), colors=colors, marker='o', **cam_kws)

    if pts3d is not None:
        for i, p in enumerate(pts3d):
            if not len(p):
                continue
            if masks is None:
                viz.add_pointcloud(to_numpy(p), color=tuple(colors[i].tolist()))
            else:
                viz.add_pointcloud(to_numpy(p), mask=masks[i], color=imgs[i])
    viz.show(**kw)