Spaces:
Runtime error
Runtime error
File size: 8,923 Bytes
55be9e4 c7e7537 55be9e4 b87bd5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import argparse
import os
from typing import Iterator
import gradio as gr
# from dotenv import load_dotenv
from distutils.util import strtobool
from llama2_wrapper import LLAMA2_WRAPPER
parser = argparse.ArgumentParser()
DEFAULT_SYSTEM_PROMPT = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
parser.add_argument('--model_path', type=str, required=False, default='76437bc4e8bea417641aaa076508098a7158e664c1cecfabfa41df497a27f98c',
help='model_path .')
parser.add_argument('--system_prompt', type=str, required=False, default=DEFAULT_SYSTEM_PROMPT,
help='Inference server Appkey. Default is .')
parser.add_argument('--max_max_new_tokens', type=int, default=2048, metavar='NUMBER',
help='maximum new tokens (default: 2048)')
FLAGS = parser.parse_args()
DEFAULT_SYSTEM_PROMPT = FLAGS.system_prompt
MAX_MAX_NEW_TOKENS = FLAGS.max_max_new_tokens
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4000
MODEL_PATH = FLAGS.model_path
assert MODEL_PATH is not None, f"MODEL_PATH is required, got: {MODEL_PATH}"
LOAD_IN_8BIT = False
LOAD_IN_4BIT = True
LLAMA_CPP = True
if LLAMA_CPP:
print("Running on CPU with llama.cpp.")
else:
import torch
if torch.cuda.is_available():
print("Running on GPU with torch transformers.")
else:
print("CUDA not found.")
config = {
"model_name": MODEL_PATH,
"load_in_8bit": LOAD_IN_8BIT,
"load_in_4bit": LOAD_IN_4BIT,
"llama_cpp": LLAMA_CPP,
"MAX_INPUT_TOKEN_LENGTH": MAX_INPUT_TOKEN_LENGTH,
}
llama2_wrapper = LLAMA2_WRAPPER(config)
llama2_wrapper.init_tokenizer()
llama2_wrapper.init_model()
DESCRIPTION = """
# Llama2-Chinese-7b-webui
θΏζ―δΈδΈͺ[Llama2-Chinese-2-7b](https://github.com/FlagAlpha/Llama2-Chinese)ηζ¨ηηι’γ
- ζ―ζη樑ε: [Llama-2-GGML](https://huggingface.co/FlagAlpha/Llama2-Chinese-7b-Chat-GGML)
- ζ―ζηεη«―
- CPU(at least 6 GB RAM), Mac/AMD
"""
def clear_and_save_textbox(message: str) -> tuple[str, str]:
return "", message
def display_input(
message: str, history: list[tuple[str, str]]
) -> list[tuple[str, str]]:
history.append((message, ""))
return history
def delete_prev_fn(history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ""
return history, message or ""
def generate(
message: str,
history_with_input: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
) -> Iterator[list[tuple[str, str]]]:
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
generator = llama2_wrapper.run(
message, history, system_prompt, max_new_tokens, temperature, top_p, top_k
)
try:
first_response = next(generator)
yield history + [(message, first_response)]
except StopIteration:
yield history + [(message, "")]
for response in generator:
yield history + [(message, response)]
def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
for x in generator:
pass
return "", x
def check_input_token_length(
message: str, chat_history: list[tuple[str, str]], system_prompt: str
) -> None:
input_token_length = llama2_wrapper.get_input_token_length(
message, chat_history, system_prompt
)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(
f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again."
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
chatbot = gr.Chatbot(label="Chatbot")
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
placeholder="Type a message...",
scale=10,
)
submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)
with gr.Row():
retry_button = gr.Button("π Retry", variant="secondary")
undo_button = gr.Button("β©οΈ Undo", variant="secondary")
clear_button = gr.Button("ποΈ Clear", variant="secondary")
saved_input = gr.State()
with gr.Accordion(label="Advanced options", open=False):
system_prompt = gr.Textbox(
label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=6
)
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=1.0,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.95,
)
top_k = gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
)
gr.Examples(
examples=[
"Hello there! How are you doing?",
"Can you explain briefly to me what is the Python programming language?",
],
inputs=textbox,
outputs=[textbox, chatbot],
fn=process_example,
cache_examples=True,
)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
button_event_preprocess = (
submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
)
.then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
)
.then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
)
.success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ""),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=8090)
|