File size: 8,923 Bytes
55be9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7e7537
55be9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b87bd5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import argparse

import os
from typing import Iterator

import gradio as gr

# from dotenv import load_dotenv
from distutils.util import strtobool

from llama2_wrapper import LLAMA2_WRAPPER


parser = argparse.ArgumentParser()

DEFAULT_SYSTEM_PROMPT = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."

parser.add_argument('--model_path', type=str, required=False, default='76437bc4e8bea417641aaa076508098a7158e664c1cecfabfa41df497a27f98c',
                    help='model_path .')

parser.add_argument('--system_prompt', type=str, required=False, default=DEFAULT_SYSTEM_PROMPT,
                    help='Inference server Appkey. Default is .')

parser.add_argument('--max_max_new_tokens', type=int, default=2048, metavar='NUMBER',
                        help='maximum new tokens (default: 2048)')

FLAGS = parser.parse_args()


DEFAULT_SYSTEM_PROMPT = FLAGS.system_prompt
MAX_MAX_NEW_TOKENS = FLAGS.max_max_new_tokens

DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4000

MODEL_PATH = FLAGS.model_path
assert MODEL_PATH is not None, f"MODEL_PATH is required, got: {MODEL_PATH}"

LOAD_IN_8BIT = False

LOAD_IN_4BIT = True

LLAMA_CPP = True

if LLAMA_CPP:
    print("Running on CPU with llama.cpp.")
else:
    import torch

    if torch.cuda.is_available():
        print("Running on GPU with torch transformers.")
    else:
        print("CUDA not found.")

config = {
    "model_name": MODEL_PATH,
    "load_in_8bit": LOAD_IN_8BIT,
    "load_in_4bit": LOAD_IN_4BIT,
    "llama_cpp": LLAMA_CPP,
    "MAX_INPUT_TOKEN_LENGTH": MAX_INPUT_TOKEN_LENGTH,
}
llama2_wrapper = LLAMA2_WRAPPER(config)
llama2_wrapper.init_tokenizer()
llama2_wrapper.init_model()

DESCRIPTION = """
# Llama2-Chinese-7b-webui

θΏ™ζ˜―δΈ€δΈͺ[Llama2-Chinese-2-7b](https://github.com/FlagAlpha/Llama2-Chinese)ηš„ζŽ¨η†η•Œι’γ€‚ 
- ζ”―ζŒηš„ζ¨‘εž‹: [Llama-2-GGML](https://huggingface.co/FlagAlpha/Llama2-Chinese-7b-Chat-GGML)
- ζ”―ζŒηš„εŽη«―
  - CPU(at least 6 GB RAM), Mac/AMD
"""


def clear_and_save_textbox(message: str) -> tuple[str, str]:
    return "", message


def display_input(
    message: str, history: list[tuple[str, str]]
) -> list[tuple[str, str]]:
    history.append((message, ""))
    return history


def delete_prev_fn(history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
    try:
        message, _ = history.pop()
    except IndexError:
        message = ""
    return history, message or ""


def generate(
    message: str,
    history_with_input: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
) -> Iterator[list[tuple[str, str]]]:
    if max_new_tokens > MAX_MAX_NEW_TOKENS:
        raise ValueError

    history = history_with_input[:-1]
    generator = llama2_wrapper.run(
        message, history, system_prompt, max_new_tokens, temperature, top_p, top_k
    )
    try:
        first_response = next(generator)
        yield history + [(message, first_response)]
    except StopIteration:
        yield history + [(message, "")]
    for response in generator:
        yield history + [(message, response)]


def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
    generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
    for x in generator:
        pass
    return "", x


def check_input_token_length(
    message: str, chat_history: list[tuple[str, str]], system_prompt: str
) -> None:
    input_token_length = llama2_wrapper.get_input_token_length(
        message, chat_history, system_prompt
    )
    if input_token_length > MAX_INPUT_TOKEN_LENGTH:
        raise gr.Error(
            f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again."
        )


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Group():
        chatbot = gr.Chatbot(label="Chatbot")
        with gr.Row():
            textbox = gr.Textbox(
                container=False,
                show_label=False,
                placeholder="Type a message...",
                scale=10,
            )
            submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)
    with gr.Row():
        retry_button = gr.Button("πŸ”„  Retry", variant="secondary")
        undo_button = gr.Button("↩️ Undo", variant="secondary")
        clear_button = gr.Button("πŸ—‘οΈ  Clear", variant="secondary")

    saved_input = gr.State()

    with gr.Accordion(label="Advanced options", open=False):
        system_prompt = gr.Textbox(
            label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=6
        )
        max_new_tokens = gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        )
        temperature = gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=1.0,
        )
        top_p = gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.95,
        )
        top_k = gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        )

    gr.Examples(
        examples=[
            "Hello there! How are you doing?",
            "Can you explain briefly to me what is the Python programming language?",
        ],
        inputs=textbox,
        outputs=[textbox, chatbot],
        fn=process_example,
        cache_examples=True,
    )

    textbox.submit(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    button_event_preprocess = (
        submit_button.click(
            fn=clear_and_save_textbox,
            inputs=textbox,
            outputs=[textbox, saved_input],
            api_name=False,
            queue=False,
        )
        .then(
            fn=display_input,
            inputs=[saved_input, chatbot],
            outputs=chatbot,
            api_name=False,
            queue=False,
        )
        .then(
            fn=check_input_token_length,
            inputs=[saved_input, chatbot, system_prompt],
            api_name=False,
            queue=False,
        )
        .success(
            fn=generate,
            inputs=[
                saved_input,
                chatbot,
                system_prompt,
                max_new_tokens,
                temperature,
                top_p,
                top_k,
            ],
            outputs=chatbot,
            api_name=False,
        )
    )

    retry_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    undo_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=lambda x: x,
        inputs=[saved_input],
        outputs=textbox,
        api_name=False,
        queue=False,
    )

    clear_button.click(
        fn=lambda: ([], ""),
        outputs=[chatbot, saved_input],
        queue=False,
        api_name=False,
    )

demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=8090)