File size: 11,903 Bytes
4ba6fde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
'''Some helper functions for PyTorch.'''
import os
import sys
import time
import math
import numpy as np
import torch
import torch.nn as nn

def get_sub_image(mega_image,overlap=0.2,ratio=1,crop_size=512):
    #mage_image: original image
    #ratio: ratio * 512 counter the different heights of image taken
    #return: list of sub image and list fo the upper left corner of sub image
    coor_list = []
    sub_image_list = []
    w,h,c = mega_image.shape
    if w < crop_size or h < crop_size:
        mega_image = image_padding(mega_image)
    size  = int(ratio*crop_size)
    num_rows = int(w/int(size*(1-overlap)))
    num_cols = int(h/int(size*(1-overlap)))
    new_size = int(size*(1-overlap))
    for i in range(num_rows+1):
        if (i == num_rows):
            for j in range(num_cols+1):
                if (j==num_cols):
                    sub_image = mega_image[-size:,-size:,:]
                    coor_list.append([w-size,h-size])
                    sub_image_list.append (sub_image)
                else:
                    sub_image = mega_image[-size:,new_size*j:new_size*j+size,:]
                    coor_list.append([w-size,new_size*j])
                    sub_image_list.append (sub_image)
        else:
            for j in range(num_cols+1):
                if (j==num_cols):
                    sub_image = mega_image[new_size*i:new_size*i+size,-size:,:]
                    coor_list.append([new_size*i,h-size])
                    sub_image_list.append (sub_image)
                else:
                    sub_image = mega_image[new_size*i:new_size*i+size,new_size*j:new_size*j+size,:]
                    coor_list.append([new_size*i,new_size*j])
                    sub_image_list.append (sub_image)
    return sub_image_list,coor_list

def image_padding(mega_image):
    w,h,c = mega_image.shape
    result = np.full((max(512,h),max(512,w), 3), (0,0,0), dtype=np.uint8)
    result[0:h,0:w] = mega_image
    return result

def py_cpu_nms(dets, thresh):  
    """Pure Python NMS baseline.""" 
    dets = np.asarray(dets) 
    x1 = dets[:, 0]  
    y1 = dets[:, 1]  
    x2 = dets[:, 2]  
    y2 = dets[:, 3]  
    scores = dets[:, 4] 
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)  
    order = scores.argsort()[::-1]  
 
    keep = []  
    while order.size > 0:  
        i = order[0]  
        keep.append(i)  
        xx1 = np.maximum(x1[i], x1[order[1:]])  
        yy1 = np.maximum(y1[i], y1[order[1:]])  
        xx2 = np.minimum(x2[i], x2[order[1:]])  
        yy2 = np.minimum(y2[i], y2[order[1:]])  
  
        w = np.maximum(0.0, xx2 - xx1 + 1)  
        h = np.maximum(0.0, yy2 - yy1 + 1)  
        inter = w * h  
        ovr = inter / (areas[i] + areas[order[1:]] - inter)  
        inds = np.where(ovr <= thresh)[0]  
        order = order[inds + 1]  
    return keep

def sort_key(row):
    return row[-1]

def filter_small_fp(bbox_list):  
    """Remove small predictions"""
    bbox_area_list = []
    new_bbox_list = []
    bbox_list.sort(key = sort_key,reverse=True)
    for bbox in bbox_list[0:max(int(0.05*len(bbox_list)),1)]:
        bbox_area_list.append((bbox[2]-bbox[0])*(bbox[3]-bbox[1]))
    print(len(bbox_area_list))
    average_area = np.mean(bbox_area_list)

    for bbox in bbox_list:
        bbox_area = (bbox[2]-bbox[0])*(bbox[3]-bbox[1])
        if abs(bbox_area-average_area)/average_area < 0.8:
            new_bbox_list.append(bbox)

    return new_bbox_list




def get_mean_and_std(dataset, max_load=10000):
    '''Compute the mean and std value of dataset.'''
    # dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    print('==> Computing mean and std..')
    N = min(max_load, len(dataset))
    for i in range(N):
        print(i)
        im,_,_ = dataset.load(1)
        for j in range(3):
            mean[j] += im[:,j,:,:].mean()
            std[j] += im[:,j,:,:].std()
    mean.div_(N)
    std.div_(N)
    return mean, std

def mask_select(input, mask, dim=0):
    '''Select tensor rows/cols using a mask tensor.

    Args:
      input: (tensor) input tensor, sized [N,M].
      mask: (tensor) mask tensor, sized [N,] or [M,].
      dim: (tensor) mask dim.

    Returns:
      (tensor) selected rows/cols.

    Example:
    >>> a = torch.randn(4,2)
    >>> a
    -0.3462 -0.6930
     0.4560 -0.7459
    -0.1289 -0.9955
     1.7454  1.9787
    [torch.FloatTensor of size 4x2]
    >>> i = a[:,0] > 0
    >>> i
    0
    1
    0
    1
    [torch.ByteTensor of size 4]
    >>> masked_select(a, i, 0)
    0.4560 -0.7459
    1.7454  1.9787
    [torch.FloatTensor of size 2x2]
    '''
    index = mask.nonzero().squeeze(1)
    return input.index_select(dim, index)

def meshgrid(x, y, row_major=True):
    '''Return meshgrid in range x & y.

    Args:
      x: (int) first dim range.
      y: (int) second dim range.
      row_major: (bool) row major or column major.

    Returns:
      (tensor) meshgrid, sized [x*y,2]

    Example:
    >> meshgrid(3,2)
    0  0
    1  0
    2  0
    0  1
    1  1
    2  1
    [torch.FloatTensor of size 6x2]

    >> meshgrid(3,2,row_major=False)
    0  0
    0  1
    0  2
    1  0
    1  1
    1  2
    [torch.FloatTensor of size 6x2]
    '''
    a = torch.arange(0,x)
    b = torch.arange(0,y)
    xx = a.repeat(y).view(-1,1)
    yy = b.view(-1,1).repeat(1,x).view(-1,1)
    return torch.cat([xx,yy],1) if row_major else torch.cat([yy,xx],1)

def change_box_order(boxes, order):
    '''Change box order between (xmin,ymin,xmax,ymax) and (xcenter,ycenter,width,height).

    Args:
      boxes: (tensor) bounding boxes, sized [N,4].
      order: (str) either 'xyxy2xywh' or 'xywh2xyxy'.

    Returns:
      (tensor) converted bounding boxes, sized [N,4].
    '''
    assert order in ['xyxy2xywh','xywh2xyxy']
    a = boxes[:,:2]
    b = boxes[:,2:]
    if order == 'xyxy2xywh':
        return torch.cat([(a+b)/2,b-a+1], 1)
    return torch.cat([a-b/2,a+b/2], 1)

def box_iou(box1, box2, order='xyxy'):
    '''Compute the intersection over union of two set of boxes.

    The default box order is (xmin, ymin, xmax, ymax).

    Args:
      box1: (tensor) bounding boxes, sized [N,4].
      box2: (tensor) bounding boxes, sized [M,4].
      order: (str) box order, either 'xyxy' or 'xywh'.

    Return:
      (tensor) iou, sized [N,M].

    Reference:
      https://github.com/chainer/chainercv/blob/master/chainercv/utils/bbox/bbox_iou.py
    '''
    if order == 'xywh':
        box1 = change_box_order(box1, 'xywh2xyxy')
        box2 = change_box_order(box2, 'xywh2xyxy')

    N = box1.size(0)
    M = box2.size(0)

    lt = torch.max(box1[:,None,:2], box2[:,:2])  # [N,M,2]
    rb = torch.min(box1[:,None,2:], box2[:,2:])  # [N,M,2]

    wh = (rb-lt+1).clamp(min=0)      # [N,M,2]
    inter = wh[:,:,0] * wh[:,:,1]  # [N,M]

    area1 = (box1[:,2]-box1[:,0]+1) * (box1[:,3]-box1[:,1]+1)  # [N,]
    area2 = (box2[:,2]-box2[:,0]+1) * (box2[:,3]-box2[:,1]+1)  # [M,]
    iou = inter / (area1[:,None] + area2 - inter)
    return iou

def box_nms(bboxes, scores, threshold=0.5, mode='union'):
    '''Non maximum suppression.

    Args:
      bboxes: (tensor) bounding boxes, sized [N,4].
      scores: (tensor) bbox scores, sized [N,].
      threshold: (float) overlap threshold.
      mode: (str) 'union' or 'min'.

    Returns:
      keep: (tensor) selected indices.

    Reference:
      https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py
    '''
    #print (bboxes.shape,scores.shape)
    if (len(bboxes.shape)==1):
        bboxes = bboxes.unsqueeze(0)
    x1 = bboxes[:,0]
    y1 = bboxes[:,1]
    x2 = bboxes[:,2]
    y2 = bboxes[:,3]

    areas = (x2-x1+1) * (y2-y1+1)
    _, order = scores.sort(0, descending=True)

    keep = []
    while order.numel() > 0:
        if order.numel() == 1:
            i = order.item()
        else:
            i = order.data[0]

        keep.append(i)

        if order.numel() == 1:
            break

        xx1 = x1[order[1:]].clamp(min=x1[i])
        yy1 = y1[order[1:]].clamp(min=y1[i])
        xx2 = x2[order[1:]].clamp(max=x2[i])
        yy2 = y2[order[1:]].clamp(max=y2[i])

        w = (xx2-xx1+1).clamp(min=0)
        h = (yy2-yy1+1).clamp(min=0)
        inter = w*h

        if mode == 'union':
            ovr = inter / (areas[i] + areas[order[1:]] - inter)
        elif mode == 'min':
            ovr = inter / areas[order[1:]].clamp(max=areas[i])
        else:
            raise TypeError('Unknown nms mode: %s.' % mode)

        ids = (ovr<=threshold).nonzero().squeeze()
        if ids.numel() == 0:
            break
        order = order[ids+1]
    return torch.LongTensor(keep)

def softmax(x):
    '''Softmax along a specific dimension.

    Args:
      x: (tensor) input tensor, sized [N,D].

    Returns:
      (tensor) softmaxed tensor, sized [N,D].
    '''
    xmax, _ = x.max(1)
    x_shift = x - xmax.view(-1,1)
    x_exp = x_shift.exp()
    return x_exp / x_exp.sum(1).view(-1,1)

def one_hot_embedding(labels, num_classes):
    '''Embedding labels to one-hot form.

    Args:
      labels: (LongTensor) class labels, sized [N,].
      num_classes: (int) number of classes.

    Returns:
      (tensor) encoded labels, sized [N,#classes].
    '''
    y = torch.eye(num_classes)  # [D,D]
    return y[labels]            # [N,D]

def msr_init(net):
    '''Initialize layer parameters.'''
    for layer in net:
        if type(layer) == nn.Conv2d:
            n = layer.kernel_size[0]*layer.kernel_size[1]*layer.out_channels
            layer.weight.data.normal_(0, math.sqrt(2./n))
            layer.bias.data.zero_()
        elif type(layer) == nn.BatchNorm2d:
            layer.weight.data.fill_(1)
            layer.bias.data.zero_()
        elif type(layer) == nn.Linear:
            layer.bias.data.zero_()

#_, term_width = os.popen('stty size', 'r').read().split()
term_width = 80
TOTAL_BAR_LENGTH = 86.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
    global last_time, begin_time
    if current == 0:
        begin_time = time.time()  # Reset for new bar.

    cur_len = int(TOTAL_BAR_LENGTH*current/total)
    rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1

    sys.stdout.write(' [')
    for i in range(cur_len):
        sys.stdout.write('=')
    sys.stdout.write('>')
    for i in range(rest_len):
        sys.stdout.write('.')
    sys.stdout.write(']')

    cur_time = time.time()
    step_time = cur_time - last_time
    last_time = cur_time
    tot_time = cur_time - begin_time

    L = []
    L.append('  Step: %s' % format_time(step_time))
    L.append(' | Tot: %s' % format_time(tot_time))
    if msg:
        L.append(' | ' + msg)

    msg = ''.join(L)
    sys.stdout.write(msg)
    for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
        sys.stdout.write(' ')

    # Go back to the center of the bar.
    for i in range(term_width-int(TOTAL_BAR_LENGTH/2)):
        sys.stdout.write('\b')
    sys.stdout.write(' %d/%d ' % (current+1, total))

    if current < total-1:
        sys.stdout.write('\r')
    else:
        sys.stdout.write('\n')
    sys.stdout.flush()

def format_time(seconds):
    days = int(seconds / 3600/24)
    seconds = seconds - days*3600*24
    hours = int(seconds / 3600)
    seconds = seconds - hours*3600
    minutes = int(seconds / 60)
    seconds = seconds - minutes*60
    secondsf = int(seconds)
    seconds = seconds - secondsf
    millis = int(seconds*1000)

    f = ''
    i = 1
    if days > 0:
        f += str(days) + 'D'
        i += 1
    if hours > 0 and i <= 2:
        f += str(hours) + 'h'
        i += 1
    if minutes > 0 and i <= 2:
        f += str(minutes) + 'm'
        i += 1
    if secondsf > 0 and i <= 2:
        f += str(secondsf) + 's'
        i += 1
    if millis > 0 and i <= 2:
        f += str(millis) + 'ms'
        i += 1
    if f == '':
        f = '0ms'
    return f