Spaces:
Running
Running
File size: 8,426 Bytes
4ba6fde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import json
import numpy as np
import pandas as pd
import glob
import cv2
import statistics
import os
import matplotlib.pyplot as plt
import seaborn as sn
import pandas as pd
from sklearn.metrics import confusion_matrix, classification_report
ss = ["American Widgeon_Female","American Widgeon_Male","Canada Goose","Canvasback_Male","Coot","Gadwall","Green-winged teal","Mallard Female",
"Mallard Male","Not a bird","Pelican","Pintail_Female","Pintail_Male","Ring-necked duck Female","Ring-necked duck Male","Scaup_Male","Shoveler_Female",
"Shoveler_Male","Snow","Unknown","White-fronted Goose"]
def IoU(true_box, pred_box):
[xmin1, ymin1, xmax1, ymax1] = [true_box[0],true_box[1],true_box[2],true_box[3]]
[xmin2, ymin2, xmax2, ymax2] = [pred_box[0],pred_box[1],pred_box[2],pred_box[3]]
area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
xmin_inter = max(xmin1, xmin2)
xmax_inter = min(xmax1, xmax2)
ymin_inter = max(ymin1, ymin2)
ymax_inter = min(ymax1, ymax2)
if xmin_inter > xmax_inter or ymin_inter > ymax_inter:
return 0
area_inter = (xmax_inter - xmin_inter) * (ymax_inter - ymin_inter)
return float(area_inter) / (area1 + area2 - area_inter)
def draw_image(image_dir,output_dir,tp_list,fp_list,fn_list,tp_cate_list,cate = True):
raw_image = cv2.imread(image_dir)
for box in fn_list:
cv2.ellipse(raw_image, [int((box[0]+box[2])/2),int((box[1]+box[3])/2)], (int(box[2]-box[0]),int(box[3]-box[1])),0, 0, 360, (0,0,255), 3)
for box in fp_list:
cv2.polylines(raw_image, np.array([[(int((box[0]+box[2])/2), box[1]), (box[0], box[3]), (box[2], box[3])]]), True, (0,0,255), 3)
for box in tp_list:
cv2.rectangle(raw_image, (box[0],box[1]), (box[2],box[3]), (0,255,0), 3)
cv2.putText(raw_image, str(box[-1])+'_'+str(box[-2]), (int(box[0]), int(box[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
if cate:
for box in tp_cate_list:
cv2.rectangle(raw_image, (box[0],box[1]), (box[2],box[3]), (255,0,0), 5)
cv2.putText(raw_image, str(box[-1]), (int(box[0]), int(box[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
save_dir = os.path.join(output_dir,os.path.split(image_dir)[-1])
cv2.imwrite(save_dir,raw_image)
def simple_str(s):
if 'Snow' in s:
return 'Snow'
elif s not in ss:
return 'Unknown'
else:
return s
def calculate_precis_recall(true_bbox,pred_bbox,iou):
fn = 0
fp = 0
tp = 0
tp_cate = 0
tp_list = []
fp_list = []
fn_list = []
tp_cate_list = []
total_pred = len(pred_bbox)
nneg = lambda x :max(0,x)
if (len(true_bbox)*len(pred_bbox)==0):
fn = len(true_bbox)
fp = len(pred_bbox)
tp = 0
else:
for t_bbox in true_bbox:
iou_val = []
for p_bbox in pred_bbox:
iou_val.append(IoU(t_bbox,p_bbox))
if sum(np.array(iou_val)>iou)==0:
fn += 1
fn_list.append(t_bbox)
else :
tp+=1
taken = iou_val.index(max(iou_val))
tmp_pred = []
tmp_pred.extend(pred_bbox[taken])
tmp_pred.append(t_bbox[-1])
tp_list.append(tmp_pred)
if pred_bbox[taken][-1] == simple_str(t_bbox[-1]):
tp_cate +=1
tp_cate_list.append(pred_bbox[taken])
pred_bbox.remove(pred_bbox[taken])
fp = total_pred-tp
fp_list = pred_bbox
return tp,fp,fn,tp_cate,tp_list,fp_list,fn_list,tp_cate_list
def get_confusion_matrix(true_bbox,pred_bbox,iou):
y_true = []
y_pred = []
if len(true_bbox) == 0:
for p_bbox in pred_bbox:
y_true.append(ss.index('Not a bird'))
y_pred.append(ss.index(p_bbox[-1]))
else:
for t_bbox in true_bbox:
iou_val = []
for p_bbox in pred_bbox:
iou_val.append(IoU(t_bbox,p_bbox))
if iou_val!=[]:
if max(iou_val) < iou:
y_true.append(ss.index(simple_str(t_bbox[-1])))
y_pred.append(ss.index('Not a bird'))
else :
taken = iou_val.index(max(iou_val))
y_true.append(ss.index(simple_str(t_bbox[-1])))
y_pred.append(ss.index(pred_bbox[taken][-1]))
pred_bbox.remove(pred_bbox[taken])
else:
y_true.append(ss.index(simple_str(t_bbox[-1])))
y_pred.append(ss.index('Not a bird'))
return y_true,y_pred
def plot_confusion_matrix(y_true,y_pred,save_dir):
label_classes = [i for i in list(range(21))]
conf_matrix = confusion_matrix(y_true, y_pred, labels=label_classes)
df_cm = pd.DataFrame(conf_matrix, index = [i for i in list(range(21))],columns = label_classes)
plt.figure(figsize = (10,7))
sn.heatmap(df_cm, annot=True)
plt.savefig(os.path.join(save_dir,"confusion_matrix.png"))
with open(os.path.join(save_dir,"metrics.txt"), 'w') as f:
f.write('\nThe classification report shows below\n'+classification_report(y_true, y_pred, labels=label_classes))
def read_box_from_gt_txt(txt_dir,if_cate=False):
bbox_list = []
if if_cate:
txt_dir = txt_dir.replace('.txt','_class.txt')
with open(txt_dir, "r") as f:
lines = f.readlines()
if lines != []:
for line in lines:
part = line.split(',')
if if_cate:
bbox_list.append([int(part[-4]),int(part[-3]),int(part[-2]),int(part[-1]),part[1]])
else:
bbox_list.append([int(part[-4]),int(part[-3]),int(part[-2]),int(part[-1]),part[0]])
return bbox_list
def read_box_from_pred_txt(txt_dir,thresh = 0.0):
bbox_list = []
with open(txt_dir, "r") as f:
lines = f.readlines()
if lines != []:
for line in lines:
part = line.split(',')
if float(part[1]) < thresh:
continue
bbox_list.append([int(part[-4]),int(part[-3]),int(part[-2]),int(part[-1]),part[0]])
return bbox_list
def compare_draw(record,prediction_dir,ground_truth_dir,image_type = 'JPG',threshhold = 0.5,iou = 0.3,if_cate = True):
predict_txt_list = sorted(glob.glob(os.path.join(prediction_dir,'*.txt')))
false_pred = []
true_pred = []
false_neg =[]
precision_per_image =[]
recall_per_image = []
count_error_per_image = []
image_name = []
f1_score_per_image = []
tp_cates = []
if if_cate:
y_true_total = []
y_pred_total = []
for index in range(len(predict_txt_list)):
gt_txt = os.path.join(ground_truth_dir,os.path.split(predict_txt_list[index])[-1])
gt_list = read_box_from_gt_txt(gt_txt,if_cate)
pred_list = read_box_from_pred_txt(predict_txt_list[index],threshhold)
image_dir = gt_txt.replace('.txt','.{}'.format(image_type))
tp,fp,fn,tp_cate,tp_list,fp_list,fn_list,tp_cate_list = calculate_precis_recall(gt_list,pred_list,iou)
draw_image(image_dir,prediction_dir.replace('detection-results','visualize-results'),tp_list,fp_list,fn_list,tp_cate_list,if_cate)
false_pred.append(fp)
true_pred.append(tp)
false_neg.append(fn)
tp_cates.append(tp_cate)
precision_this_image = 0
recall_this_image = 0
f1_score_this_image = 0
count_error_this_image = 0
if tp != 0:
precision_this_image = round((1.0*tp)/(1.0*tp+1.0*fp),2)
recall_this_image = round((1.0*tp)/(1.0*tp+1.0*fn),2)
f1_score_this_image = round(2*precision_this_image*recall_this_image/(precision_this_image+recall_this_image),2)
if tp+fn != 0:
count_error_this_image = round(abs((1.0*fp-1.0*fn)/(1.0*tp+1.0*fn)),2)
record[index].extend([tp+fp,tp+fn,tp,fp,fn,precision_this_image,recall_this_image,f1_score_this_image,count_error_this_image])
count_error_per_image.append(count_error_this_image)
if if_cate:
gt_list = read_box_from_gt_txt(gt_txt,if_cate)
pred_list = read_box_from_pred_txt(predict_txt_list[index],threshhold)
y_true,y_pred = get_confusion_matrix(gt_list,pred_list,iou)
y_true_total.extend(y_true)
y_pred_total.extend(y_pred)
precision = (1.0*np.sum(true_pred))/(1.0*np.sum(true_pred)+1.0*np.sum(false_pred))
recall = (1.0*np.sum(true_pred)/(1.0*(np.sum(true_pred)+np.sum(false_neg))))
f1_score = 2*precision*recall/(precision+recall)
count_error = statistics.median(count_error_per_image)
cate_precision = (1.0*np.sum(tp_cates))/(1.0*np.sum(true_pred)+1.0*np.sum(false_pred))
cate_recall = (1.0*np.sum(tp_cates)/(1.0*(np.sum(true_pred)+np.sum(false_neg))))
cate_f1_score = 2*cate_precision*cate_recall/(cate_precision+cate_recall)
if if_cate:
plot_confusion_matrix(y_true_total,y_pred_total,prediction_dir.replace('detection-results',''))
return record,round(precision,2),round(recall,2),round(f1_score,2),round(cate_precision,2),round(cate_recall,2),round(cate_f1_score,2),round(count_error,2)
|