File size: 6,871 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
from collections.abc import Generator

import pytest

from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
    AssistantPromptMessage,
    PromptMessageTool,
    SystemPromptMessage,
    UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.x.llm.llm import XAILargeLanguageModel

"""FOR MOCK FIXTURES, DO NOT REMOVE"""
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock


def test_predefined_models():
    model = XAILargeLanguageModel()
    model_schemas = model.predefined_models()

    assert len(model_schemas) >= 1
    assert isinstance(model_schemas[0], AIModelEntity)


@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_validate_credentials_for_chat_model(setup_openai_mock):
    model = XAILargeLanguageModel()

    with pytest.raises(CredentialsValidateFailedError):
        # model name to gpt-3.5-turbo because of mocking
        model.validate_credentials(
            model="gpt-3.5-turbo",
            credentials={"api_key": "invalid_key", "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat"},
        )

    model.validate_credentials(
        model="grok-beta",
        credentials={
            "api_key": os.environ.get("XAI_API_KEY"),
            "endpoint_url": os.environ.get("XAI_API_BASE"),
            "mode": "chat",
        },
    )


@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_chat_model(setup_openai_mock):
    model = XAILargeLanguageModel()

    result = model.invoke(
        model="grok-beta",
        credentials={
            "api_key": os.environ.get("XAI_API_KEY"),
            "endpoint_url": os.environ.get("XAI_API_BASE"),
            "mode": "chat",
        },
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        model_parameters={
            "temperature": 0.0,
            "top_p": 1.0,
            "presence_penalty": 0.0,
            "frequency_penalty": 0.0,
            "max_tokens": 10,
        },
        stop=["How"],
        stream=False,
        user="foo",
    )

    assert isinstance(result, LLMResult)
    assert len(result.message.content) > 0


@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_chat_model_with_tools(setup_openai_mock):
    model = XAILargeLanguageModel()

    result = model.invoke(
        model="grok-beta",
        credentials={
            "api_key": os.environ.get("XAI_API_KEY"),
            "endpoint_url": os.environ.get("XAI_API_BASE"),
            "mode": "chat",
        },
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(
                content="what's the weather today in London?",
            ),
        ],
        model_parameters={"temperature": 0.0, "max_tokens": 100},
        tools=[
            PromptMessageTool(
                name="get_weather",
                description="Determine weather in my location",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
                        "unit": {"type": "string", "enum": ["c", "f"]},
                    },
                    "required": ["location"],
                },
            ),
            PromptMessageTool(
                name="get_stock_price",
                description="Get the current stock price",
                parameters={
                    "type": "object",
                    "properties": {"symbol": {"type": "string", "description": "The stock symbol"}},
                    "required": ["symbol"],
                },
            ),
        ],
        stream=False,
        user="foo",
    )

    assert isinstance(result, LLMResult)
    assert isinstance(result.message, AssistantPromptMessage)


@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_stream_chat_model(setup_openai_mock):
    model = XAILargeLanguageModel()

    result = model.invoke(
        model="grok-beta",
        credentials={
            "api_key": os.environ.get("XAI_API_KEY"),
            "endpoint_url": os.environ.get("XAI_API_BASE"),
            "mode": "chat",
        },
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        model_parameters={"temperature": 0.0, "max_tokens": 100},
        stream=True,
        user="foo",
    )

    assert isinstance(result, Generator)

    for chunk in result:
        assert isinstance(chunk, LLMResultChunk)
        assert isinstance(chunk.delta, LLMResultChunkDelta)
        assert isinstance(chunk.delta.message, AssistantPromptMessage)
        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
        if chunk.delta.finish_reason is not None:
            assert chunk.delta.usage is not None
            assert chunk.delta.usage.completion_tokens > 0


def test_get_num_tokens():
    model = XAILargeLanguageModel()

    num_tokens = model.get_num_tokens(
        model="grok-beta",
        credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")},
        prompt_messages=[UserPromptMessage(content="Hello World!")],
    )

    assert num_tokens == 10

    num_tokens = model.get_num_tokens(
        model="grok-beta",
        credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")},
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        tools=[
            PromptMessageTool(
                name="get_weather",
                description="Determine weather in my location",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
                        "unit": {"type": "string", "enum": ["c", "f"]},
                    },
                    "required": ["location"],
                },
            ),
        ],
    )

    assert num_tokens == 77