Spaces:
Runtime error
Runtime error
File size: 7,553 Bytes
1f418ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import os.path as osp
import argparse
import torch
import torch.nn as nn
import wandb
from torch.utils.data import DataLoader
from mmengine.utils import mkdir_or_exist
from mmengine.config import Config, DictAction
from mmengine.logging import MMLogger
from estimator.utils import RunnerInfo, setup_env, log_env, fix_random_seed
from estimator.models.builder import build_model
from estimator.datasets.builder import build_dataset
from estimator.trainer import Trainer
def parse_args():
parser = argparse.ArgumentParser(description='Train a segmentor')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--resume',
action='store_true',
default=False,
help='resume from the latest checkpoint in the work_dir automatically')
parser.add_argument(
'--debug',
action='store_true',
default=False,
help='debug mode')
parser.add_argument(
'--log-name',
type=str, default='',
help='log_name for wandb')
parser.add_argument(
'--tags',
type=str, default='',
help='tags for wandb')
parser.add_argument(
'--amp',
action='store_true',
default=False,
help='enable automatic-mixed-precision training')
parser.add_argument(
'--seed',
type=int, default=621,
help='for debug')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/train.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
# if args.debug:
# torch.autograd.set_detect_anomaly(True) # for debug
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
cfg.work_dir = args.work_dir
cfg.work_dir = osp.join(cfg.work_dir, args.log_name)
mkdir_or_exist(cfg.work_dir)
cfg.debug = args.debug
cfg.log_name = args.log_name
tags = args.tags
if ',' in tags:
tag_list = tags.split(',')
else:
tag_list = [tags]
cfg.tags = tag_list
# fix seed
seed = args.seed
fix_random_seed(seed)
# start dist training
if cfg.launcher == 'none':
distributed = False
else:
distributed = True
env_cfg = cfg.get('env_cfg', dict(dist_cfg=dict(backend='nccl')))
rank, world_size, timestamp = setup_env(env_cfg, distributed, cfg.launcher)
# prepare basic text logger
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
log_cfg = dict(log_level='INFO', log_file=log_file)
log_cfg.setdefault('name', timestamp)
log_cfg.setdefault('logger_name', 'patchstitcher')
# `torch.compile` in PyTorch 2.0 could close all user defined handlers
# unexpectedly. Using file mode 'a' can help prevent abnormal
# termination of the FileHandler and ensure that the log file could
# be continuously updated during the lifespan of the runner.
log_cfg.setdefault('file_mode', 'a')
logger = MMLogger.get_instance(**log_cfg)
# save some information useful during the training
runner_info = RunnerInfo()
runner_info.config = cfg # ideally, cfg should not be changed during process. information should be temp saved in runner_info
runner_info.logger = logger # easier way: use print_log("infos", logger='current')
runner_info.rank = rank
runner_info.distributed = distributed
runner_info.launcher = cfg.launcher
runner_info.seed = seed
runner_info.world_size = world_size
runner_info.work_dir = cfg.work_dir
runner_info.timestamp = timestamp
# start wandb
if runner_info.rank == 0 and cfg.debug == False:
wandb.init(
project=cfg.project,
name=cfg.log_name+"_"+runner_info.timestamp,
tags=cfg.tags,
dir=runner_info.work_dir,
config=cfg, # have a test
settings=wandb.Settings(start_method="fork"))
wandb.define_metric("Val/step")
wandb.define_metric("Val/*", step_metric="Val/step")
wandb.define_metric("Train/step")
wandb.define_metric("Train/*", step_metric="Train/step")
log_env(cfg, env_cfg, runner_info, logger)
# resume training (future)
cfg.resume = args.resume
# build model
model = build_model(cfg.model)
if runner_info.distributed:
torch.cuda.set_device(runner_info.rank)
if cfg.get('convert_syncbn', False):
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = model.cuda(runner_info.rank)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[runner_info.rank], output_device=runner_info.rank,
find_unused_parameters=cfg.get('find_unused_parameters', False))
logger.info(model)
else:
model = model.cuda(runner_info.rank)
logger.info(model)
# build dataloader
dataset = build_dataset(cfg.train_dataloader.dataset)
if runner_info.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
else:
train_sampler = None
train_dataloader = DataLoader(
dataset,
batch_size=cfg.train_dataloader.batch_size,
shuffle=(train_sampler is None),
num_workers=cfg.train_dataloader.num_workers,
pin_memory=True,
persistent_workers=True,
sampler=train_sampler)
dataset = build_dataset(cfg.val_dataloader.dataset)
if runner_info.distributed:
val_sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=False)
else:
val_sampler = None
val_dataloader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
num_workers=cfg.val_dataloader.num_workers,
pin_memory=True,
persistent_workers=True,
sampler=val_sampler)
# everything is ready, start training. But before that, save your config!
cfg.dump(osp.join(cfg.work_dir, 'config.py'))
# build trainer
trainer = Trainer(
config=cfg,
runner_info=runner_info,
train_sampler=train_sampler,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
model=model)
trainer.run()
wandb.finish()
if __name__ == '__main__':
main() |