Spaces:
Runtime error
Runtime error
File size: 48,350 Bytes
78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
import os
import cv2
import argparse
from zoedepth.utils.config import get_config_user
from zoedepth.models.builder import build_model
from zoedepth.utils.arg_utils import parse_unknown
import numpy as np
from zoedepth.models.base_models.midas import Resize
from torchvision.transforms import Compose
from torchvision.transforms import Normalize
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import copy
from zoedepth.utils.misc import get_boundaries
from zoedepth.utils.misc import compute_metrics, RunningAverageDict
from tqdm import tqdm
import matplotlib
import torch.nn.functional as F
from zoedepth.data.middleburry import readPFM
import random
import imageio
from PIL import Image
def load_state_dict(model, state_dict):
"""Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict.
DataParallel prefixes state_dict keys with 'module.' when saving.
If the model is not a DataParallel model but the state_dict is, then prefixes are removed.
If the model is a DataParallel model but the state_dict is not, then prefixes are added.
"""
state_dict = state_dict.get('model', state_dict)
# if model is a DataParallel model, then state_dict keys are prefixed with 'module.'
do_prefix = isinstance(
model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel))
state = {}
for k, v in state_dict.items():
if k.startswith('module.') and not do_prefix:
k = k[7:]
if not k.startswith('module.') and do_prefix:
k = 'module.' + k
state[k] = v
model.load_state_dict(state, strict=True)
# model.load_state_dict(state, strict=False)
print("Loaded successfully")
return model
def load_wts(model, checkpoint_path):
ckpt = torch.load(checkpoint_path, map_location='cpu')
return load_state_dict(model, ckpt)
def load_ckpt(model, checkpoint):
model = load_wts(model, checkpoint)
print("Loaded weights from {0}".format(checkpoint))
return model
#### def dataset
def read_image(path, dataset_name):
if dataset_name == 'u4k':
img = np.fromfile(open(path, 'rb'), dtype=np.uint8).reshape(2160, 3840, 3) / 255.0
img = img.astype(np.float32)[:, :, ::-1].copy()
elif dataset_name == 'mid':
img = cv2.imread(path)
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
img = F.interpolate(torch.tensor(img).unsqueeze(dim=0).permute(0, 3, 1, 2), IMG_RESOLUTION, mode='bicubic', align_corners=True)
img = img.squeeze().permute(1, 2, 0)
elif dataset_name == 'nyu':
img = Image.open(path)
img = np.asarray(img, dtype=np.float32) / 255.0
else:
img = cv2.imread(path)
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
print(img.shape)
img = F.interpolate(torch.tensor(img).unsqueeze(dim=0).permute(0, 3, 1, 2), IMG_RESOLUTION, mode='bicubic', align_corners=True)
img = img.squeeze().permute(1, 2, 0)
return img
class Images:
def __init__(self, root_dir, files, index, dataset_name=None):
self.root_dir = root_dir
name = files[index]
self.dataset_name = dataset_name
self.rgb_image = read_image(os.path.join(self.root_dir, name), dataset_name)
name = name.replace(".jpg", "")
name = name.replace(".png", "")
name = name.replace(".jpeg", "")
self.name = name
class DepthMap:
def __init__(self, root_dir, files, index, dataset_name, pred=False):
self.root_dir = root_dir
name = files[index]
gt_path = os.path.join(self.root_dir, name)
if dataset_name == 'u4k':
depth_factor = gt_path.replace('val_gt', 'val_factor')
depth_factor = depth_factor.replace('.npy', '.txt')
with open(depth_factor, 'r') as f:
df = f.readline()
df = float(df)
gt_disp = np.load(gt_path, mmap_mode='c')
gt_disp = gt_disp.astype(np.float32)
edges = get_boundaries(gt_disp, th=1, dilation=0)
gt_depth = df/gt_disp
self.gt = gt_depth
self.edge = edges
elif dataset_name == 'gta':
gt_depth = imageio.imread(gt_path)
gt_depth = np.array(gt_depth).astype(np.float32) / 256
edges = get_boundaries(gt_depth, th=1, dilation=0)
self.gt = gt_depth
self.edge = edges
elif dataset_name == 'mid':
depth_factor = gt_path.replace('gts', 'calibs')
depth_factor = depth_factor.replace('.pfm', '.txt')
with open(depth_factor, 'r') as f:
ext_l = f.readlines()
cam_info = ext_l[0].strip()
cam_info_f = float(cam_info.split(' ')[0].split('[')[1])
base = float(ext_l[3].strip().split('=')[1])
doffs = float(ext_l[2].strip().split('=')[1])
depth_factor = base * cam_info_f
height = 1840
width = 2300
disp_gt, scale = readPFM(gt_path)
disp_gt = disp_gt.astype(np.float32)
disp_gt_copy = disp_gt.copy()
disp_gt = disp_gt
invalid_mask = disp_gt == np.inf
depth_gt = depth_factor / (disp_gt + doffs)
depth_gt = depth_gt / 1000
depth_gt[invalid_mask] = 0 # set to a invalid number
disp_gt_copy[invalid_mask] = 0
edges = get_boundaries(disp_gt_copy, th=1, dilation=0)
self.gt = depth_gt
self.edge = edges
elif dataset_name == 'nyu':
if pred:
depth_gt = np.load(gt_path.replace('png', 'npy'))
depth_gt = nn.functional.interpolate(
torch.tensor(depth_gt).unsqueeze(dim=0).unsqueeze(dim=0), (480, 640), mode='bilinear', align_corners=True).squeeze().numpy()
edges = get_boundaries(depth_gt, th=1, dilation=0)
else:
depth_gt = np.asarray(Image.open(gt_path), dtype=np.float32) / 1000
edges = get_boundaries(depth_gt, th=1, dilation=0)
self.gt = depth_gt
self.edge = edges
else:
raise NotImplementedError
name = name.replace(".npy", "") # u4k
name = name.replace(".exr", "") # gta
self.name = name
class ImageDataset:
def __init__(self, rgb_image_dir, gt_dir=None, dataset_name=''):
self.rgb_image_dir = rgb_image_dir
self.files = sorted(os.listdir(self.rgb_image_dir))
self.gt_dir = gt_dir
self.dataset_name = dataset_name
if gt_dir is not None:
self.gt_dir = gt_dir
self.gt_files = sorted(os.listdir(self.gt_dir))
def __len__(self):
return len(self.files)
def __getitem__(self, index):
if self.dataset_name == 'nyu':
return Images(self.rgb_image_dir, self.files, index, self.dataset_name), DepthMap(self.gt_dir, self.gt_files, index, self.dataset_name), DepthMap('/ibex/ai/home/liz0l/codes/ZoeDepth/nfs/save/nyu', self.gt_files, index, self.dataset_name, pred=True)
if self.gt_dir is not None:
return Images(self.rgb_image_dir, self.files, index, self.dataset_name), DepthMap(self.gt_dir, self.gt_files, index, self.dataset_name)
else:
return Images(self.rgb_image_dir, self.files, index)
def crop(img, crop_bbox):
crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox
templete = torch.zeros((1, 1, img.shape[-2], img.shape[-1]), dtype=torch.float)
templete[:, :, crop_y1:crop_y2, crop_x1:crop_x2] = 1.0
img = img[:, :, crop_y1:crop_y2, crop_x1:crop_x2]
return img, templete
# def generatemask(size):
# # Generates a Guassian mask
# mask = np.zeros(size, dtype=np.float32)
# sigma = int(size[0]/16)
# k_size = int(2 * np.ceil(2 * int(size[0]/16)) + 1)
# mask[int(0.15*size[0]):size[0] - int(0.15*size[0]), int(0.15*size[1]): size[1] - int(0.15*size[1])] = 1
# mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma)
# mask = (mask - mask.min()) / (mask.max() - mask.min())
# mask = mask.astype(np.float32)
# return mask
def generatemask(size):
# Generates a Guassian mask
mask = np.zeros(size, dtype=np.float32)
sigma = int(size[0]/16)
k_size = int(2 * np.ceil(2 * int(size[0]/16)) + 1)
mask[int(0.1*size[0]):size[0] - int(0.1*size[0]), int(0.1*size[1]): size[1] - int(0.1*size[1])] = 1
mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma)
mask = (mask - mask.min()) / (mask.max() - mask.min())
mask = mask.astype(np.float32)
return mask
def generatemask_coarse(size):
# Generates a Guassian mask
mask = np.zeros(size, dtype=np.float32)
sigma = int(size[0]/64)
k_size = int(2 * np.ceil(2 * int(size[0]/64)) + 1)
mask[int(0.001*size[0]):size[0] - int(0.001*size[0]), int(0.001*size[1]): size[1] - int(0.001*size[1])] = 1
mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma)
mask = (mask - mask.min()) / (mask.max() - mask.min())
mask = mask.astype(np.float32)
return mask
class RunningAverageMap:
"""A dictionary of running averages."""
def __init__(self, average_map, count_map):
self.average_map = average_map
self.count_map = count_map
self.average_map = self.average_map / self.count_map
def update(self, pred_map, ct_map):
self.average_map = (pred_map + self.count_map * self.average_map) / (self.count_map + ct_map)
self.count_map = self.count_map + ct_map
# default size [540, 960]
# x_start, y_start = [0, 540, 1080, 1620], [0, 960, 1920, 2880]
def regular_tile(model, image, offset_x=0, offset_y=0, img_lr=None, iter_pred=None, boundary=0, update=False, avg_depth_map=None, blr_mask=False):
# crop size
# height = 540
# width = 960
height = CROP_SIZE[0]
width = CROP_SIZE[1]
assert offset_x >= 0 and offset_y >= 0
tile_num_x = (IMG_RESOLUTION[1] - offset_x) // width
tile_num_y = (IMG_RESOLUTION[0] - offset_y) // height
x_start = [width * x + offset_x for x in range(tile_num_x)]
y_start = [height * y + offset_y for y in range(tile_num_y)]
imgs_crop = []
crop_areas = []
bboxs_roi = []
bboxs_raw = []
if iter_pred is not None:
iter_pred = iter_pred.unsqueeze(dim=0).unsqueeze(dim=0)
iter_priors = []
for x in x_start: # w
for y in y_start: # h
bbox = (int(y), int(y+height), int(x), int(x+width))
img_crop, crop_area = crop(image, bbox)
imgs_crop.append(img_crop)
crop_areas.append(crop_area)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bbox_roi = torch.tensor([crop_x1 / IMG_RESOLUTION[1] * 512, crop_y1 / IMG_RESOLUTION[0] * 384, crop_x2 / IMG_RESOLUTION[1] * 512, crop_y2 / IMG_RESOLUTION[0] * 384])
bboxs_roi.append(bbox_roi)
bbox_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw.append(bbox_raw)
if iter_pred is not None:
iter_prior, _ = crop(iter_pred, bbox)
iter_priors.append(iter_prior)
crop_areas = torch.cat(crop_areas, dim=0)
imgs_crop = torch.cat(imgs_crop, dim=0)
bboxs_roi = torch.stack(bboxs_roi, dim=0)
bboxs_raw = torch.stack(bboxs_raw, dim=0)
if iter_pred is not None:
iter_priors = torch.cat(iter_priors, dim=0)
iter_priors = TRANSFORM(iter_priors)
iter_priors = iter_priors.cuda().float()
crop_areas = TRANSFORM(crop_areas)
imgs_crop = TRANSFORM(imgs_crop)
imgs_crop = imgs_crop.cuda().float()
bboxs_roi = bboxs_roi.cuda().float()
crop_areas = crop_areas.cuda().float()
img_lr = img_lr.cuda().float()
pred_depth_crops = []
with torch.no_grad():
for i, (img, bbox, crop_area) in enumerate(zip(imgs_crop, bboxs_roi, crop_areas)):
if iter_pred is not None:
iter_prior = iter_priors[i].unsqueeze(dim=0)
else:
iter_prior = None
if i == 0:
out_dict = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)
whole_depth_pred = out_dict['coarse_depth_pred']
# return whole_depth_pred.squeeze()
# pred_depth_crop = out_dict['fine_depth_pred']
pred_depth_crop = out_dict['metric_depth']
else:
pred_depth_crop = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)['metric_depth']
# pred_depth_crop = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)['fine_depth_pred']
pred_depth_crop = nn.functional.interpolate(
pred_depth_crop, (height, width), mode='bilinear', align_corners=True)
# pred_depth_crop = nn.functional.interpolate(
# pred_depth_crop, (height, width), mode='nearest')
pred_depth_crops.append(pred_depth_crop.squeeze())
whole_depth_pred = whole_depth_pred.squeeze()
whole_depth_pred = nn.functional.interpolate(whole_depth_pred.unsqueeze(dim=0).unsqueeze(dim=0), IMG_RESOLUTION, mode='bilinear', align_corners=True).squeeze()
####### stich part
inner_idx = 0
init_flag = False
if offset_x == 0 and offset_y == 0:
init_flag = True
# pred_depth = whole_depth_pred
pred_depth = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
else:
iter_pred = iter_pred.squeeze()
pred_depth = iter_pred
blur_mask = generatemask((height, width)) + 1e-3
count_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
for ii, x in enumerate(x_start):
for jj, y in enumerate(y_start):
if init_flag:
# pred_depth[y: y+height, x: x+width] = blur_mask * pred_depth_crops[inner_idx] + (1 - blur_mask) * crop_temp
# pred_depth[y: y+height, x: x+width] = blur_mask * pred_depth_crops[inner_idx] + (1 - blur_mask) * crop_temp
blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
count_map[y: y+height, x: x+width] = blur_mask
pred_depth[y: y+height, x: x+width] = pred_depth_crops[inner_idx] * blur_mask
else:
# ensemble with running mean
if blr_mask:
blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
count_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
count_map[y: y+height, x: x+width] = blur_mask
pred_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
pred_map[y: y+height, x: x+width] = pred_depth_crops[inner_idx] * blur_mask
avg_depth_map.update(pred_map, count_map)
else:
if boundary != 0:
count_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
count_map[y+boundary: y+height-boundary, x+boundary: x+width-boundary] = 1
pred_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
pred_map[y+boundary: y+height-boundary, x+boundary: x+width-boundary] = pred_depth_crops[inner_idx][boundary:-boundary, boundary:-boundary]
avg_depth_map.update(pred_map, count_map)
else:
count_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
count_map[y: y+height, x: x+width] = 1
pred_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
pred_map[y: y+height, x: x+width] = pred_depth_crops[inner_idx]
avg_depth_map.update(pred_map, count_map)
inner_idx += 1
if init_flag:
avg_depth_map = RunningAverageMap(pred_depth, count_map)
# blur_mask = generatemask_coarse(IMG_RESOLUTION)
# blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
# count_map = (1 - blur_mask)
# pred_map = whole_depth_pred * (1 - blur_mask)
# avg_depth_map.update(pred_map, count_map)
return avg_depth_map
def regular_tile_param(model, image, offset_x=0, offset_y=0, img_lr=None, iter_pred=None, boundary=0, update=False, avg_depth_map=None, blr_mask=False, crop_size=None,
img_resolution=None, transform=None):
# crop size
# height = 540
# width = 960
height = crop_size[0]
width = crop_size[1]
assert offset_x >= 0 and offset_y >= 0
tile_num_x = (img_resolution[1] - offset_x) // width
tile_num_y = (img_resolution[0] - offset_y) // height
x_start = [width * x + offset_x for x in range(tile_num_x)]
y_start = [height * y + offset_y for y in range(tile_num_y)]
imgs_crop = []
crop_areas = []
bboxs_roi = []
bboxs_raw = []
if iter_pred is not None:
iter_pred = iter_pred.unsqueeze(dim=0).unsqueeze(dim=0)
iter_priors = []
for x in x_start: # w
for y in y_start: # h
bbox = (int(y), int(y+height), int(x), int(x+width))
img_crop, crop_area = crop(image, bbox)
imgs_crop.append(img_crop)
crop_areas.append(crop_area)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bbox_roi = torch.tensor([crop_x1 / img_resolution[1] * 512, crop_y1 / img_resolution[0] * 384, crop_x2 / img_resolution[1] * 512, crop_y2 / img_resolution[0] * 384])
bboxs_roi.append(bbox_roi)
bbox_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw.append(bbox_raw)
if iter_pred is not None:
iter_prior, _ = crop(iter_pred, bbox)
iter_priors.append(iter_prior)
crop_areas = torch.cat(crop_areas, dim=0)
imgs_crop = torch.cat(imgs_crop, dim=0)
bboxs_roi = torch.stack(bboxs_roi, dim=0)
bboxs_raw = torch.stack(bboxs_raw, dim=0)
if iter_pred is not None:
iter_priors = torch.cat(iter_priors, dim=0)
iter_priors = transform(iter_priors)
iter_priors = iter_priors.to(image.device).float()
crop_areas = transform(crop_areas)
imgs_crop = transform(imgs_crop)
imgs_crop = imgs_crop.to(image.device).float()
bboxs_roi = bboxs_roi.to(image.device).float()
crop_areas = crop_areas.to(image.device).float()
img_lr = img_lr.to(image.device).float()
pred_depth_crops = []
with torch.no_grad():
for i, (img, bbox, crop_area) in enumerate(zip(imgs_crop, bboxs_roi, crop_areas)):
if iter_pred is not None:
iter_prior = iter_priors[i].unsqueeze(dim=0)
else:
iter_prior = None
if i == 0:
out_dict = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)
whole_depth_pred = out_dict['coarse_depth_pred']
# return whole_depth_pred.squeeze()
# pred_depth_crop = out_dict['fine_depth_pred']
pred_depth_crop = out_dict['metric_depth']
else:
pred_depth_crop = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)['metric_depth']
# pred_depth_crop = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)['fine_depth_pred']
pred_depth_crop = nn.functional.interpolate(
pred_depth_crop, (height, width), mode='bilinear', align_corners=True)
# pred_depth_crop = nn.functional.interpolate(
# pred_depth_crop, (height, width), mode='nearest')
pred_depth_crops.append(pred_depth_crop.squeeze())
whole_depth_pred = whole_depth_pred.squeeze()
whole_depth_pred = nn.functional.interpolate(whole_depth_pred.unsqueeze(dim=0).unsqueeze(dim=0), img_resolution, mode='bilinear', align_corners=True).squeeze()
####### stich part
inner_idx = 0
init_flag = False
if offset_x == 0 and offset_y == 0:
init_flag = True
# pred_depth = whole_depth_pred
pred_depth = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
else:
iter_pred = iter_pred.squeeze()
pred_depth = iter_pred
blur_mask = generatemask((height, width)) + 1e-3
count_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
for ii, x in enumerate(x_start):
for jj, y in enumerate(y_start):
if init_flag:
# pred_depth[y: y+height, x: x+width] = blur_mask * pred_depth_crops[inner_idx] + (1 - blur_mask) * crop_temp
# pred_depth[y: y+height, x: x+width] = blur_mask * pred_depth_crops[inner_idx] + (1 - blur_mask) * crop_temp
blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
count_map[y: y+height, x: x+width] = blur_mask
pred_depth[y: y+height, x: x+width] = pred_depth_crops[inner_idx] * blur_mask
else:
# ensemble with running mean
if blr_mask:
blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
count_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
count_map[y: y+height, x: x+width] = blur_mask
pred_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
pred_map[y: y+height, x: x+width] = pred_depth_crops[inner_idx] * blur_mask
avg_depth_map.update(pred_map, count_map)
else:
if boundary != 0:
count_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
count_map[y+boundary: y+height-boundary, x+boundary: x+width-boundary] = 1
pred_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
pred_map[y+boundary: y+height-boundary, x+boundary: x+width-boundary] = pred_depth_crops[inner_idx][boundary:-boundary, boundary:-boundary]
avg_depth_map.update(pred_map, count_map)
else:
count_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
count_map[y: y+height, x: x+width] = 1
pred_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
pred_map[y: y+height, x: x+width] = pred_depth_crops[inner_idx]
avg_depth_map.update(pred_map, count_map)
inner_idx += 1
if init_flag:
avg_depth_map = RunningAverageMap(pred_depth, count_map)
# blur_mask = generatemask_coarse(img_resolution)
# blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
# count_map = (1 - blur_mask)
# pred_map = whole_depth_pred * (1 - blur_mask)
# avg_depth_map.update(pred_map, count_map)
return avg_depth_map
def random_tile(model, image, img_lr=None, iter_pred=None, boundary=0, update=False, avg_depth_map=None, blr_mask=False):
height = CROP_SIZE[0]
width = CROP_SIZE[1]
x_start = [random.randint(0, IMG_RESOLUTION[1] - width - 1)]
y_start = [random.randint(0, IMG_RESOLUTION[0] - height - 1)]
imgs_crop = []
crop_areas = []
bboxs_roi = []
bboxs_raw = []
if iter_pred is not None:
iter_pred = iter_pred.unsqueeze(dim=0).unsqueeze(dim=0)
iter_priors = []
for x in x_start: # w
for y in y_start: # h
bbox = (int(y), int(y+height), int(x), int(x+width))
img_crop, crop_area = crop(image, bbox)
imgs_crop.append(img_crop)
crop_areas.append(crop_area)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bbox_roi = torch.tensor([crop_x1 / IMG_RESOLUTION[1] * 512, crop_y1 / IMG_RESOLUTION[0] * 384, crop_x2 / IMG_RESOLUTION[1] * 512, crop_y2 / IMG_RESOLUTION[0] * 384])
bboxs_roi.append(bbox_roi)
bbox_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw.append(bbox_raw)
if iter_pred is not None:
iter_prior, _ = crop(iter_pred, bbox)
iter_priors.append(iter_prior)
crop_areas = torch.cat(crop_areas, dim=0)
imgs_crop = torch.cat(imgs_crop, dim=0)
bboxs_roi = torch.stack(bboxs_roi, dim=0)
bboxs_raw = torch.stack(bboxs_raw, dim=0)
if iter_pred is not None:
iter_priors = torch.cat(iter_priors, dim=0)
iter_priors = TRANSFORM(iter_priors)
iter_priors = iter_priors.cuda().float()
crop_areas = TRANSFORM(crop_areas)
imgs_crop = TRANSFORM(imgs_crop)
imgs_crop = imgs_crop.cuda().float()
bboxs_roi = bboxs_roi.cuda().float()
crop_areas = crop_areas.cuda().float()
img_lr = img_lr.cuda().float()
pred_depth_crops = []
with torch.no_grad():
for i, (img, bbox, crop_area) in enumerate(zip(imgs_crop, bboxs_roi, crop_areas)):
if iter_pred is not None:
iter_prior = iter_priors[i].unsqueeze(dim=0)
else:
iter_prior = None
if i == 0:
out_dict = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)
whole_depth_pred = out_dict['coarse_depth_pred']
pred_depth_crop = out_dict['metric_depth']
# return whole_depth_pred.squeeze()
else:
pred_depth_crop = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)['metric_depth']
pred_depth_crop = nn.functional.interpolate(
pred_depth_crop, (height, width), mode='bilinear', align_corners=True)
# pred_depth_crop = nn.functional.interpolate(
# pred_depth_crop, (height, width), mode='nearest')
pred_depth_crops.append(pred_depth_crop.squeeze())
whole_depth_pred = whole_depth_pred.squeeze()
####### stich part
inner_idx = 0
init_flag = False
iter_pred = iter_pred.squeeze()
pred_depth = iter_pred
blur_mask = generatemask((height, width)) + 1e-3
for ii, x in enumerate(x_start):
for jj, y in enumerate(y_start):
if init_flag:
# wont be here
crop_temp = copy.deepcopy(whole_depth_pred[y: y+height, x: x+width])
blur_mask = torch.ones((height, width))
blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
pred_depth[y: y+height, x: x+width] = blur_mask * pred_depth_crops[inner_idx]+ (1 - blur_mask) * crop_temp
else:
if blr_mask:
blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
count_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
count_map[y: y+height, x: x+width] = blur_mask
pred_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
pred_map[y: y+height, x: x+width] = pred_depth_crops[inner_idx] * blur_mask
avg_depth_map.update(pred_map, count_map)
else:
# ensemble with running mean
if boundary != 0:
count_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
count_map[y+boundary: y+height-boundary, x+boundary: x+width-boundary] = 1
pred_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
pred_map[y+boundary: y+height-boundary, x+boundary: x+width-boundary] = pred_depth_crops[inner_idx][boundary:-boundary, boundary:-boundary]
avg_depth_map.update(pred_map, count_map)
else:
count_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
count_map[y: y+height, x: x+width] = 1
pred_map = torch.zeros(IMG_RESOLUTION, device=pred_depth_crops[inner_idx].device)
pred_map[y: y+height, x: x+width] = pred_depth_crops[inner_idx]
avg_depth_map.update(pred_map, count_map)
inner_idx += 1
if avg_depth_map is None:
return pred_depth
def random_tile_param(model, image, img_lr=None, iter_pred=None, boundary=0, update=False, avg_depth_map=None, blr_mask=False, crop_size=None,
img_resolution=None, transform=None):
height = crop_size[0]
width = crop_size[1]
x_start = [random.randint(0, img_resolution[1] - width - 1)]
y_start = [random.randint(0, img_resolution[0] - height - 1)]
imgs_crop = []
crop_areas = []
bboxs_roi = []
bboxs_raw = []
if iter_pred is not None:
iter_pred = iter_pred.unsqueeze(dim=0).unsqueeze(dim=0)
iter_priors = []
for x in x_start: # w
for y in y_start: # h
bbox = (int(y), int(y+height), int(x), int(x+width))
img_crop, crop_area = crop(image, bbox)
imgs_crop.append(img_crop)
crop_areas.append(crop_area)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bbox_roi = torch.tensor([crop_x1 / img_resolution[1] * 512, crop_y1 / img_resolution[0] * 384, crop_x2 / img_resolution[1] * 512, crop_y2 / img_resolution[0] * 384])
bboxs_roi.append(bbox_roi)
bbox_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw.append(bbox_raw)
if iter_pred is not None:
iter_prior, _ = crop(iter_pred, bbox)
iter_priors.append(iter_prior)
crop_areas = torch.cat(crop_areas, dim=0)
imgs_crop = torch.cat(imgs_crop, dim=0)
bboxs_roi = torch.stack(bboxs_roi, dim=0)
bboxs_raw = torch.stack(bboxs_raw, dim=0)
if iter_pred is not None:
iter_priors = torch.cat(iter_priors, dim=0)
iter_priors = transform(iter_priors)
iter_priors = iter_priors.cuda().float()
crop_areas = transform(crop_areas)
imgs_crop = transform(imgs_crop)
imgs_crop = imgs_crop.cuda().float()
bboxs_roi = bboxs_roi.cuda().float()
crop_areas = crop_areas.cuda().float()
img_lr = img_lr.cuda().float()
pred_depth_crops = []
with torch.no_grad():
for i, (img, bbox, crop_area) in enumerate(zip(imgs_crop, bboxs_roi, crop_areas)):
if iter_pred is not None:
iter_prior = iter_priors[i].unsqueeze(dim=0)
else:
iter_prior = None
if i == 0:
out_dict = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)
whole_depth_pred = out_dict['coarse_depth_pred']
pred_depth_crop = out_dict['metric_depth']
# return whole_depth_pred.squeeze()
else:
pred_depth_crop = model(img.unsqueeze(dim=0), mode='eval', image_raw=img_lr, bbox=bbox.unsqueeze(dim=0), crop_area=crop_area.unsqueeze(dim=0), iter_prior=iter_prior if update is True else None)['metric_depth']
pred_depth_crop = nn.functional.interpolate(
pred_depth_crop, (height, width), mode='bilinear', align_corners=True)
# pred_depth_crop = nn.functional.interpolate(
# pred_depth_crop, (height, width), mode='nearest')
pred_depth_crops.append(pred_depth_crop.squeeze())
whole_depth_pred = whole_depth_pred.squeeze()
####### stich part
inner_idx = 0
init_flag = False
iter_pred = iter_pred.squeeze()
pred_depth = iter_pred
blur_mask = generatemask((height, width)) + 1e-3
for ii, x in enumerate(x_start):
for jj, y in enumerate(y_start):
if init_flag:
# wont be here
crop_temp = copy.deepcopy(whole_depth_pred[y: y+height, x: x+width])
blur_mask = torch.ones((height, width))
blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
pred_depth[y: y+height, x: x+width] = blur_mask * pred_depth_crops[inner_idx]+ (1 - blur_mask) * crop_temp
else:
if blr_mask:
blur_mask = torch.tensor(blur_mask, device=whole_depth_pred.device)
count_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
count_map[y: y+height, x: x+width] = blur_mask
pred_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
pred_map[y: y+height, x: x+width] = pred_depth_crops[inner_idx] * blur_mask
avg_depth_map.update(pred_map, count_map)
else:
# ensemble with running mean
if boundary != 0:
count_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
count_map[y+boundary: y+height-boundary, x+boundary: x+width-boundary] = 1
pred_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
pred_map[y+boundary: y+height-boundary, x+boundary: x+width-boundary] = pred_depth_crops[inner_idx][boundary:-boundary, boundary:-boundary]
avg_depth_map.update(pred_map, count_map)
else:
count_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
count_map[y: y+height, x: x+width] = 1
pred_map = torch.zeros(img_resolution, device=pred_depth_crops[inner_idx].device)
pred_map[y: y+height, x: x+width] = pred_depth_crops[inner_idx]
avg_depth_map.update(pred_map, count_map)
inner_idx += 1
if avg_depth_map is None:
return pred_depth
def colorize_infer(value, cmap='magma_r', vmin=None, vmax=None):
# normalize
vmin = value.min() if vmin is None else vmin
# vmax = value.max() if vmax is None else vmax
vmax = np.percentile(value, 95) if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
value = value * 0.
cmapper = matplotlib.cm.get_cmap(cmap)
value = cmapper(value, bytes=True) # ((1)xhxwx4)
value = value[:, :, :3] # bgr -> rgb
rgb_value = value[..., ::-1]
return rgb_value
def colorize(value, vmin=None, vmax=None, cmap='turbo_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None, dataset_name=None):
"""Converts a depth map to a color image.
Args:
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
Returns:
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
"""
if isinstance(value, torch.Tensor):
value = value.detach().cpu().numpy()
value = value.squeeze()
if invalid_mask is None:
invalid_mask = value == invalid_val
mask = np.logical_not(invalid_mask)
# normalize
# vmin = np.percentile(value[mask],2) if vmin is None else vmin
# vmin = value.min() if vmin is None else vmin
# vmax = np.percentile(value[mask],95) if vmax is None else vmax
# mid gt
if dataset_name == 'mid':
vmin = np.percentile(value[mask],2) if vmin is None else vmin
vmax = np.percentile(value[mask],85) if vmax is None else vmax
else:
vmin = value.min() if vmin is None else vmin
vmax = np.percentile(value[mask],95) if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
# Avoid 0-division
value = value * 0.
# squeeze last dim if it exists
# grey out the invalid values
value[invalid_mask] = np.nan
cmapper = matplotlib.cm.get_cmap(cmap)
if value_transform:
value = value_transform(value)
# value = value / value.max()
value = cmapper(value, bytes=True) # (nxmx4)
# img = value[:, :, :]
img = value[...]
img[invalid_mask] = background_color
# return img.transpose((2, 0, 1))
if gamma_corrected:
# gamma correction
img = img / 255
img = np.power(img, 2.2)
img = img * 255
img = img.astype(np.uint8)
return img
def rescale(A, lbound=0, ubound=1):
"""
Rescale an array to [lbound, ubound].
Parameters:
- A: Input data as numpy array
- lbound: Lower bound of the scale, default is 0.
- ubound: Upper bound of the scale, default is 1.
Returns:
- Rescaled array
"""
A_min = np.min(A)
A_max = np.max(A)
return (ubound - lbound) * (A - A_min) / (A_max - A_min) + lbound
def run(model, dataset, gt_dir=None, show_path=None, show=False, save_flag=False, save_path=None, mode=None, dataset_name=None, base_zoed=False, blr_mask=False):
data_len = len(dataset)
if gt_dir is not None:
metrics_avg = RunningAverageDict()
for image_ind in tqdm(range(data_len)):
if dataset_name == 'nyu':
images, depths, pred_depths = dataset[image_ind]
else:
if gt_dir is None:
images = dataset[image_ind]
else:
images, depths = dataset[image_ind]
# Load image from dataset
img = torch.tensor(images.rgb_image).unsqueeze(dim=0).permute(0, 3, 1, 2) # shape: 1, 3, h, w
img_lr = TRANSFORM(img)
if base_zoed:
with torch.no_grad():
pred_depth = model(img.cuda())['metric_depth'].squeeze()
avg_depth_map = RunningAverageMap(pred_depth)
else:
# pred_depth, count_map = regular_tile(model, img, offset_x=0, offset_y=0, img_lr=img_lr)
# avg_depth_map = RunningAverageMap(pred_depth, count_map)
avg_depth_map = regular_tile(model, img, offset_x=0, offset_y=0, img_lr=img_lr)
if mode== 'p16':
pass
elif mode== 'p49':
regular_tile(model, img, offset_x=CROP_SIZE[1]//2, offset_y=0, img_lr=img_lr, iter_pred=avg_depth_map.average_map, boundary=BOUNDARY, update=True, avg_depth_map=avg_depth_map, blr_mask=blr_mask)
regular_tile(model, img, offset_x=0, offset_y=CROP_SIZE[0]//2, img_lr=img_lr, iter_pred=avg_depth_map.average_map, boundary=BOUNDARY, update=True, avg_depth_map=avg_depth_map, blr_mask=blr_mask)
regular_tile(model, img, offset_x=CROP_SIZE[1]//2, offset_y=CROP_SIZE[0]//2, img_lr=img_lr, iter_pred=avg_depth_map.average_map, boundary=BOUNDARY, update=True, avg_depth_map=avg_depth_map, blr_mask=blr_mask)
elif mode[0] == 'r':
regular_tile(model, img, offset_x=CROP_SIZE[1]//2, offset_y=0, img_lr=img_lr, iter_pred=avg_depth_map.average_map, boundary=BOUNDARY, update=True, avg_depth_map=avg_depth_map, blr_mask=blr_mask)
regular_tile(model, img, offset_x=0, offset_y=CROP_SIZE[0]//2, img_lr=img_lr, iter_pred=avg_depth_map.average_map, boundary=BOUNDARY, update=True, avg_depth_map=avg_depth_map, blr_mask=blr_mask)
regular_tile(model, img, offset_x=CROP_SIZE[1]//2, offset_y=CROP_SIZE[0]//2, img_lr=img_lr, iter_pred=avg_depth_map.average_map, boundary=BOUNDARY, update=True, avg_depth_map=avg_depth_map, blr_mask=blr_mask)
for i in tqdm(range(int(mode[1:]))):
random_tile(model, img, img_lr=img_lr, iter_pred=avg_depth_map.average_map, boundary=BOUNDARY, update=True, avg_depth_map=avg_depth_map, blr_mask=blr_mask)
if show:
color_map = copy.deepcopy(avg_depth_map.average_map)
color_map = colorize_infer(color_map.detach().cpu().numpy())
cv2.imwrite(os.path.join(show_path, '{}.png'.format(images.name)), color_map)
if save_flag:
np.save(os.path.join(save_path, '{}.npy'.format(images.name)), avg_depth_map.average_map.squeeze().detach().cpu().numpy())
# np.save(os.path.join(save_path, '{}.npy'.format(images.name)), depths.gt)
if gt_dir is not None:
if dataset_name == 'nyu':
metrics = compute_metrics(torch.tensor(depths.gt), avg_depth_map.average_map, disp_gt_edges=depths.edge, min_depth_eval=1e-3, max_depth_eval=10, garg_crop=False, eigen_crop=True, dataset='nyu', pred_depths=torch.tensor(pred_depths.gt))
# metrics = compute_metrics(torch.tensor(depths.gt), avg_depth_map.average_map, disp_gt_edges=depths.edge, min_depth_eval=1e-3, max_depth_eval=10, garg_crop=False, eigen_crop=True, dataset='nyu')
else:
metrics = compute_metrics(torch.tensor(depths.gt), avg_depth_map.average_map, disp_gt_edges=depths.edge, min_depth_eval=1e-3, max_depth_eval=80, garg_crop=False, eigen_crop=False, dataset='')
metrics_avg.update(metrics)
print(metrics)
if gt_dir is not None:
print(metrics_avg.get_value())
else:
print("successful!")
return avg_depth_map
####
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--rgb_dir', type=str, required=True)
parser.add_argument('--show_path', type=str, required=None)
parser.add_argument("--ckp_path", type=str, required=True)
parser.add_argument("-m", "--model", type=str, default="zoedepth")
parser.add_argument("--model_cfg_path", type=str, default="")
parser.add_argument("--gt_dir", type=str, default=None)
parser.add_argument("--dataset_name", type=str, default=None)
parser.add_argument("--show", action='store_true')
parser.add_argument("--save", action='store_true')
parser.add_argument("--save_path", type=str, default=None)
parser.add_argument("--img_resolution", type=str, default=None)
parser.add_argument("--crop_size", type=str, default=None)
parser.add_argument("--mode", type=str, default=None)
parser.add_argument("--base_zoed", action='store_true')
parser.add_argument("--boundary", type=int, default=0)
parser.add_argument("--blur_mask", action='store_true')
args, unknown_args = parser.parse_known_args()
# prepare some global args
global IMG_RESOLUTION
if args.dataset_name == 'u4k':
IMG_RESOLUTION = (2160, 3840)
elif args.dataset_name == 'gta':
IMG_RESOLUTION = (1080, 1920)
elif args.dataset_name == 'nyu':
IMG_RESOLUTION = (480, 640)
else:
IMG_RESOLUTION = (2160, 3840)
global TRANSFORM
TRANSFORM = Compose([Resize(512, 384, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")])
global BOUNDARY
BOUNDARY = args.boundary
if args.img_resolution is not None:
IMG_RESOLUTION = (int(args.img_resolution.split('x')[0]), int(args.img_resolution.split('x')[1]))
global CROP_SIZE
CROP_SIZE = (int(IMG_RESOLUTION[0] // 4), int(IMG_RESOLUTION[1] // 4))
if args.crop_size is not None:
CROP_SIZE = (int(args.crop_size.split('x')[0]), int(args.crop_size.split('x')[1]))
print("\nCurrent image resolution: {}\n Current crop size: {}".format(IMG_RESOLUTION, CROP_SIZE))
overwrite_kwargs = parse_unknown(unknown_args)
overwrite_kwargs['model_cfg_path'] = args.model_cfg_path
overwrite_kwargs["model"] = args.model
# blur_mask_crop = generatemask(CROP_SIZE)
# plt.imshow(blur_mask_crop)
# plt.savefig('./nfs/results_show/crop_mask.png')
# blur_mask_crop = generatemask_coarse(IMG_RESOLUTION)
# plt.imshow(blur_mask_crop)
# plt.savefig('./nfs/results_show/whole_mask.png')
config = get_config_user(args.model, **overwrite_kwargs)
config["pretrained_resource"] = ''
model = build_model(config)
model = load_ckpt(model, args.ckp_path)
model.eval()
model.cuda()
# Create dataset from input images
dataset_custom = ImageDataset(args.rgb_dir, args.gt_dir, args.dataset_name)
# start running
if args.show:
os.makedirs(args.show_path, exist_ok=True)
if args.save:
os.makedirs(args.save_path, exist_ok=True)
run(model, dataset_custom, args.gt_dir, args.show_path, args.show, args.save, args.save_path, mode=args.mode, dataset_name=args.dataset_name, base_zoed=args.base_zoed, blr_mask=args.blur_mask)
|