File size: 4,970 Bytes
8ad9e26
 
 
 
 
 
 
 
 
 
 
 
b6fb8c4
 
8ad9e26
 
 
 
44846b2
b6fb8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad9e26
 
 
 
 
 
fa4087a
 
 
 
 
8ad9e26
fa4087a
 
 
 
 
 
 
 
 
 
 
b6fb8c4
fa4087a
 
8ad9e26
 
fa4087a
 
8ad9e26
 
 
fa4087a
 
 
 
8ad9e26
 
fa4087a
44846b2
 
b6fb8c4
 
44846b2
b6fb8c4
44846b2
8ad9e26
 
 
44846b2
 
 
b6fb8c4
44846b2
 
 
b6fb8c4
8ad9e26
fa4087a
 
 
8ad9e26
 
 
 
 
 
b6fb8c4
8ad9e26
b6fb8c4
44846b2
8ad9e26
 
 
 
 
44846b2
b6fb8c4
fa4087a
 
 
 
 
b6fb8c4
8ad9e26
 
b6fb8c4
8ad9e26
b6fb8c4
8ad9e26
b6fb8c4
8ad9e26
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import logging

from llama_index import download_loader
from llama_index import (
    Document,
    LLMPredictor,
    PromptHelper,
    QuestionAnswerPrompt,
    RefinePrompt,
)
import colorama
import PyPDF2
from tqdm import tqdm

from modules.presets import *
from modules.utils import *

def get_index_name(file_src):
    file_paths = [x.name for x in file_src]
    file_paths.sort(key=lambda x: os.path.basename(x))

    md5_hash = hashlib.md5()
    for file_path in file_paths:
        with open(file_path, "rb") as f:
            while chunk := f.read(8192):
                md5_hash.update(chunk)

    return md5_hash.hexdigest()

def block_split(text):
    blocks = []
    while len(text) > 0:
        blocks.append(Document(text[:1000]))
        text = text[1000:]
    return blocks

def get_documents(file_src):
    documents = []
    logging.debug("Loading documents...")
    logging.debug(f"file_src: {file_src}")
    for file in file_src:
        filepath = file.name
        filename = os.path.basename(filepath)
        file_type = os.path.splitext(filepath)[1]
        logging.info(f"loading file: {filename}")
        if file_type == ".pdf":
            logging.debug("Loading PDF...")
            try:
                from modules.pdf_func import parse_pdf
                from modules.config import advance_docs
                two_column = advance_docs["pdf"].get("two_column", False)
                pdftext = parse_pdf(filepath, two_column).text
            except:
                pdftext = ""
                with open(filepath, 'rb') as pdfFileObj:
                    pdfReader = PyPDF2.PdfReader(pdfFileObj)
                    for page in tqdm(pdfReader.pages):
                        pdftext += page.extract_text()
            text_raw = pdftext
        elif file_type == ".docx":
            logging.debug("Loading Word...")
            DocxReader = download_loader("DocxReader")
            loader = DocxReader()
            text_raw = loader.load_data(file=filepath)[0].text
        elif file_type == ".epub":
            logging.debug("Loading EPUB...")
            EpubReader = download_loader("EpubReader")
            loader = EpubReader()
            text_raw = loader.load_data(file=filepath)[0].text
        elif file_type == ".xlsx":
            logging.debug("Loading Excel...")
            text_raw = excel_to_string(filepath)
        else:
            logging.debug("Loading text file...")
            with open(filepath, "r", encoding="utf-8") as f:
                text_raw = f.read()
        text = add_space(text_raw)
        # text = block_split(text)
        # documents += text
        documents += [Document(text)]
    logging.debug("Documents loaded.")
    return documents


def construct_index(
        api_key,
        file_src,
        max_input_size=4096,
        num_outputs=5,
        max_chunk_overlap=20,
        chunk_size_limit=600,
        embedding_limit=None,
        separator=" "
):
    from langchain.chat_models import ChatOpenAI
    from llama_index import GPTSimpleVectorIndex, ServiceContext

    os.environ["OPENAI_API_KEY"] = api_key
    chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
    embedding_limit = None if embedding_limit == 0 else embedding_limit
    separator = " " if separator == "" else separator

    llm_predictor = LLMPredictor(
        llm=ChatOpenAI(model_name="gpt-3.5-turbo-0301", openai_api_key=api_key)
    )
    prompt_helper = PromptHelper(max_input_size = max_input_size, num_output = num_outputs, max_chunk_overlap = max_chunk_overlap, embedding_limit=embedding_limit, chunk_size_limit=600, separator=separator)
    index_name = get_index_name(file_src)
    if os.path.exists(f"./index/{index_name}.json"):
        logging.info("找到了缓存的索引文件,加载中……")
        return GPTSimpleVectorIndex.load_from_disk(f"./index/{index_name}.json")
    else:
        try:
            documents = get_documents(file_src)
            logging.info("构建索引中……")
            with retrieve_proxy():
                service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit=chunk_size_limit)
                index = GPTSimpleVectorIndex.from_documents(
                    documents,  service_context=service_context
                )
            logging.debug("索引构建完成!")
            os.makedirs("./index", exist_ok=True)
            index.save_to_disk(f"./index/{index_name}.json")
            logging.debug("索引已保存至本地!")
            return index

        except Exception as e:
            logging.error("索引构建失败!", e)
            print(e)
            return None


def add_space(text):
    punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "}
    for cn_punc, en_punc in punctuations.items():
        text = text.replace(cn_punc, en_punc)
    return text