File size: 30,635 Bytes
88b0dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
'''
This script is helper function for preprocessing.
Most of the code are converted from LayoutNet official's matlab code.
All functions, naming rule and data flow follow official for easier
converting and comparing.
Code is not optimized for python or numpy yet.
'''
import sys
import numpy as np
from scipy.ndimage import map_coordinates
import cv2
from pylsd import lsd
def computeUVN(n, in_, planeID):
'''
compute v given u and normal.
'''
if planeID == 2:
n = np.array([n[1], n[2], n[0]])
elif planeID == 3:
n = np.array([n[2], n[0], n[1]])
bc = n[0] * np.sin(in_) + n[1] * np.cos(in_)
bs = n[2]
out = np.arctan(-bc / (bs + 1e-9))
return out
def computeUVN_vec(n, in_, planeID):
'''
vectorization version of computeUVN
@n N x 3
@in_ MN x 1
@planeID N
'''
n = n.copy()
if (planeID == 2).sum():
n[planeID == 2] = np.roll(n[planeID == 2], 2, axis=1)
if (planeID == 3).sum():
n[planeID == 3] = np.roll(n[planeID == 3], 1, axis=1)
n = np.repeat(n, in_.shape[0] // n.shape[0], axis=0)
assert n.shape[0] == in_.shape[0]
bc = n[:, [0]] * np.sin(in_) + n[:, [1]] * np.cos(in_)
bs = n[:, [2]]
out = np.arctan(-bc / (bs + 1e-9))
return out
def xyz2uvN(xyz, planeID=1):
ID1 = (int(planeID) - 1 + 0) % 3
ID2 = (int(planeID) - 1 + 1) % 3
ID3 = (int(planeID) - 1 + 2) % 3
normXY = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2)
normXY[normXY < 0.000001] = 0.000001
normXYZ = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2 + xyz[:, [ID3]] ** 2)
v = np.arcsin(xyz[:, [ID3]] / normXYZ)
u = np.arcsin(xyz[:, [ID1]] / normXY)
valid = (xyz[:, [ID2]] < 0) & (u >= 0)
u[valid] = np.pi - u[valid]
valid = (xyz[:, [ID2]] < 0) & (u <= 0)
u[valid] = -np.pi - u[valid]
uv = np.hstack([u, v])
uv[np.isnan(uv[:, 0]), 0] = 0
return uv
def uv2xyzN(uv, planeID=1):
ID1 = (int(planeID) - 1 + 0) % 3
ID2 = (int(planeID) - 1 + 1) % 3
ID3 = (int(planeID) - 1 + 2) % 3
xyz = np.zeros((uv.shape[0], 3))
xyz[:, ID1] = np.cos(uv[:, 1]) * np.sin(uv[:, 0])
xyz[:, ID2] = np.cos(uv[:, 1]) * np.cos(uv[:, 0])
xyz[:, ID3] = np.sin(uv[:, 1])
return xyz
def uv2xyzN_vec(uv, planeID):
'''
vectorization version of uv2xyzN
@uv N x 2
@planeID N
'''
assert (planeID.astype(int) != planeID).sum() == 0
planeID = planeID.astype(int)
ID1 = (planeID - 1 + 0) % 3
ID2 = (planeID - 1 + 1) % 3
ID3 = (planeID - 1 + 2) % 3
ID = np.arange(len(uv))
xyz = np.zeros((len(uv), 3))
xyz[ID, ID1] = np.cos(uv[:, 1]) * np.sin(uv[:, 0])
xyz[ID, ID2] = np.cos(uv[:, 1]) * np.cos(uv[:, 0])
xyz[ID, ID3] = np.sin(uv[:, 1])
return xyz
def warpImageFast(im, XXdense, YYdense):
minX = max(1., np.floor(XXdense.min()) - 1)
minY = max(1., np.floor(YYdense.min()) - 1)
maxX = min(im.shape[1], np.ceil(XXdense.max()) + 1)
maxY = min(im.shape[0], np.ceil(YYdense.max()) + 1)
im = im[int(round(minY-1)):int(round(maxY)),
int(round(minX-1)):int(round(maxX))]
assert XXdense.shape == YYdense.shape
out_shape = XXdense.shape
coordinates = [
(YYdense - minY).reshape(-1),
(XXdense - minX).reshape(-1),
]
im_warp = np.stack([
map_coordinates(im[..., c], coordinates, order=1).reshape(out_shape)
for c in range(im.shape[-1])],
axis=-1)
return im_warp
def rotatePanorama(img, vp=None, R=None):
'''
Rotate panorama
if R is given, vp (vanishing point) will be overlooked
otherwise R is computed from vp
'''
sphereH, sphereW, C = img.shape
# new uv coordinates
TX, TY = np.meshgrid(range(1, sphereW + 1), range(1, sphereH + 1))
TX = TX.reshape(-1, 1, order='F')
TY = TY.reshape(-1, 1, order='F')
ANGx = (TX - sphereW/2 - 0.5) / sphereW * np.pi * 2
ANGy = -(TY - sphereH/2 - 0.5) / sphereH * np.pi
uvNew = np.hstack([ANGx, ANGy])
xyzNew = uv2xyzN(uvNew, 1)
# rotation matrix
if R is None:
R = np.linalg.inv(vp.T)
xyzOld = np.linalg.solve(R, xyzNew.T).T
uvOld = xyz2uvN(xyzOld, 1)
Px = (uvOld[:, 0] + np.pi) / (2*np.pi) * sphereW + 0.5
Py = (-uvOld[:, 1] + np.pi/2) / np.pi * sphereH + 0.5
Px = Px.reshape(sphereH, sphereW, order='F')
Py = Py.reshape(sphereH, sphereW, order='F')
# boundary
imgNew = np.zeros((sphereH+2, sphereW+2, C), np.float64)
imgNew[1:-1, 1:-1, :] = img
imgNew[1:-1, 0, :] = img[:, -1, :]
imgNew[1:-1, -1, :] = img[:, 0, :]
imgNew[0, 1:sphereW//2+1, :] = img[0, sphereW-1:sphereW//2-1:-1, :]
imgNew[0, sphereW//2+1:-1, :] = img[0, sphereW//2-1::-1, :]
imgNew[-1, 1:sphereW//2+1, :] = img[-1, sphereW-1:sphereW//2-1:-1, :]
imgNew[-1, sphereW//2+1:-1, :] = img[0, sphereW//2-1::-1, :]
imgNew[0, 0, :] = img[0, 0, :]
imgNew[-1, -1, :] = img[-1, -1, :]
imgNew[0, -1, :] = img[0, -1, :]
imgNew[-1, 0, :] = img[-1, 0, :]
rotImg = warpImageFast(imgNew, Px+1, Py+1)
return rotImg
def imgLookAt(im, CENTERx, CENTERy, new_imgH, fov):
sphereH = im.shape[0]
sphereW = im.shape[1]
warped_im = np.zeros((new_imgH, new_imgH, 3))
TX, TY = np.meshgrid(range(1, new_imgH + 1), range(1, new_imgH + 1))
TX = TX.reshape(-1, 1, order='F')
TY = TY.reshape(-1, 1, order='F')
TX = TX - 0.5 - new_imgH/2
TY = TY - 0.5 - new_imgH/2
r = new_imgH / 2 / np.tan(fov/2)
# convert to 3D
R = np.sqrt(TY ** 2 + r ** 2)
ANGy = np.arctan(- TY / r)
ANGy = ANGy + CENTERy
X = np.sin(ANGy) * R
Y = -np.cos(ANGy) * R
Z = TX
INDn = np.nonzero(np.abs(ANGy) > np.pi/2)
# project back to sphere
ANGx = np.arctan(Z / -Y)
RZY = np.sqrt(Z ** 2 + Y ** 2)
ANGy = np.arctan(X / RZY)
ANGx[INDn] = ANGx[INDn] + np.pi
ANGx = ANGx + CENTERx
INDy = np.nonzero(ANGy < -np.pi/2)
ANGy[INDy] = -np.pi - ANGy[INDy]
ANGx[INDy] = ANGx[INDy] + np.pi
INDx = np.nonzero(ANGx <= -np.pi); ANGx[INDx] = ANGx[INDx] + 2 * np.pi
INDx = np.nonzero(ANGx > np.pi); ANGx[INDx] = ANGx[INDx] - 2 * np.pi
INDx = np.nonzero(ANGx > np.pi); ANGx[INDx] = ANGx[INDx] - 2 * np.pi
INDx = np.nonzero(ANGx > np.pi); ANGx[INDx] = ANGx[INDx] - 2 * np.pi
Px = (ANGx + np.pi) / (2*np.pi) * sphereW + 0.5
Py = ((-ANGy) + np.pi/2) / np.pi * sphereH + 0.5
INDxx = np.nonzero(Px < 1)
Px[INDxx] = Px[INDxx] + sphereW
im = np.concatenate([im, im[:, :2]], 1)
Px = Px.reshape(new_imgH, new_imgH, order='F')
Py = Py.reshape(new_imgH, new_imgH, order='F')
warped_im = warpImageFast(im, Px, Py)
return warped_im
def separatePano(panoImg, fov, x, y, imgSize=320):
'''cut a panorama image into several separate views'''
assert x.shape == y.shape
if not isinstance(fov, np.ndarray):
fov = fov * np.ones_like(x)
sepScene = [
{
'img': imgLookAt(panoImg.copy(), xi, yi, imgSize, fovi),
'vx': xi,
'vy': yi,
'fov': fovi,
'sz': imgSize,
}
for xi, yi, fovi in zip(x, y, fov)
]
return sepScene
def lsdWrap(img):
'''
Opencv implementation of
Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel Morel, and Gregory Randall,
LSD: a Line Segment Detector, Image Processing On Line, vol. 2012.
[Rafael12] http://www.ipol.im/pub/art/2012/gjmr-lsd/?utm_source=doi
@img
input image
'''
if len(img.shape) == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
lines = lsd(img, quant=0.7)
if lines is None:
return np.zeros_like(img), np.array([])
edgeMap = np.zeros_like(img)
for i in range(lines.shape[0]):
pt1 = (int(lines[i, 0]), int(lines[i, 1]))
pt2 = (int(lines[i, 2]), int(lines[i, 3]))
width = lines[i, 4]
cv2.line(edgeMap, pt1, pt2, 255, int(np.ceil(width / 2)))
edgeList = np.concatenate([lines, np.ones_like(lines[:, :2])], 1)
return edgeMap, edgeList
def edgeFromImg2Pano(edge):
edgeList = edge['edgeLst']
if len(edgeList) == 0:
return np.array([])
vx = edge['vx']
vy = edge['vy']
fov = edge['fov']
imH, imW = edge['img'].shape
R = (imW/2) / np.tan(fov/2)
# im is the tangent plane, contacting with ball at [x0 y0 z0]
x0 = R * np.cos(vy) * np.sin(vx)
y0 = R * np.cos(vy) * np.cos(vx)
z0 = R * np.sin(vy)
vecposX = np.array([np.cos(vx), -np.sin(vx), 0])
vecposY = np.cross(np.array([x0, y0, z0]), vecposX)
vecposY = vecposY / np.sqrt(vecposY @ vecposY.T)
vecposX = vecposX.reshape(1, -1)
vecposY = vecposY.reshape(1, -1)
Xc = (0 + imW-1) / 2
Yc = (0 + imH-1) / 2
vecx1 = edgeList[:, [0]] - Xc
vecy1 = edgeList[:, [1]] - Yc
vecx2 = edgeList[:, [2]] - Xc
vecy2 = edgeList[:, [3]] - Yc
vec1 = np.tile(vecx1, [1, 3]) * vecposX + np.tile(vecy1, [1, 3]) * vecposY
vec2 = np.tile(vecx2, [1, 3]) * vecposX + np.tile(vecy2, [1, 3]) * vecposY
coord1 = [[x0, y0, z0]] + vec1
coord2 = [[x0, y0, z0]] + vec2
normal = np.cross(coord1, coord2, axis=1)
normal = normal / np.linalg.norm(normal, axis=1, keepdims=True)
panoList = np.hstack([normal, coord1, coord2, edgeList[:, [-1]]])
return panoList
def _intersection(range1, range2):
if range1[1] < range1[0]:
range11 = [range1[0], 1]
range12 = [0, range1[1]]
else:
range11 = range1
range12 = [0, 0]
if range2[1] < range2[0]:
range21 = [range2[0], 1]
range22 = [0, range2[1]]
else:
range21 = range2
range22 = [0, 0]
b = max(range11[0], range21[0]) < min(range11[1], range21[1])
if b:
return b
b2 = max(range12[0], range22[0]) < min(range12[1], range22[1])
b = b or b2
return b
def _insideRange(pt, range):
if range[1] > range[0]:
b = pt >= range[0] and pt <= range[1]
else:
b1 = pt >= range[0] and pt <= 1
b2 = pt >= 0 and pt <= range[1]
b = b1 or b2
return b
def combineEdgesN(edges):
'''
Combine some small line segments, should be very conservative
OUTPUT
lines: combined line segments
ori_lines: original line segments
line format [nx ny nz projectPlaneID umin umax LSfov score]
'''
arcList = []
for edge in edges:
panoLst = edge['panoLst']
if len(panoLst) == 0:
continue
arcList.append(panoLst)
arcList = np.vstack(arcList)
# ori lines
numLine = len(arcList)
ori_lines = np.zeros((numLine, 8))
areaXY = np.abs(arcList[:, 2])
areaYZ = np.abs(arcList[:, 0])
areaZX = np.abs(arcList[:, 1])
planeIDs = np.argmax(np.stack([areaXY, areaYZ, areaZX], -1), 1) + 1 # XY YZ ZX
for i in range(numLine):
ori_lines[i, :3] = arcList[i, :3]
ori_lines[i, 3] = planeIDs[i]
coord1 = arcList[i, 3:6]
coord2 = arcList[i, 6:9]
uv = xyz2uvN(np.stack([coord1, coord2]), planeIDs[i])
umax = uv[:, 0].max() + np.pi
umin = uv[:, 0].min() + np.pi
if umax - umin > np.pi:
ori_lines[i, 4:6] = np.array([umax, umin]) / 2 / np.pi
else:
ori_lines[i, 4:6] = np.array([umin, umax]) / 2 / np.pi
ori_lines[i, 6] = np.arccos((
np.dot(coord1, coord2) / (np.linalg.norm(coord1) * np.linalg.norm(coord2))
).clip(-1, 1))
ori_lines[i, 7] = arcList[i, 9]
# additive combination
lines = ori_lines.copy()
for _ in range(3):
numLine = len(lines)
valid_line = np.ones(numLine, bool)
for i in range(numLine):
if not valid_line[i]:
continue
dotProd = (lines[:, :3] * lines[[i], :3]).sum(1)
valid_curr = np.logical_and((np.abs(dotProd) > np.cos(np.pi / 180)), valid_line)
valid_curr[i] = False
for j in np.nonzero(valid_curr)[0]:
range1 = lines[i, 4:6]
range2 = lines[j, 4:6]
valid_rag = _intersection(range1, range2)
if not valid_rag:
continue
# combine
I = np.argmax(np.abs(lines[i, :3]))
if lines[i, I] * lines[j, I] > 0:
nc = lines[i, :3] * lines[i, 6] + lines[j, :3] * lines[j, 6]
else:
nc = lines[i, :3] * lines[i, 6] - lines[j, :3] * lines[j, 6]
nc = nc / np.linalg.norm(nc)
if _insideRange(range1[0], range2):
nrmin = range2[0]
else:
nrmin = range1[0]
if _insideRange(range1[1], range2):
nrmax = range2[1]
else:
nrmax = range1[1]
u = np.array([[nrmin], [nrmax]]) * 2 * np.pi - np.pi
v = computeUVN(nc, u, lines[i, 3])
xyz = uv2xyzN(np.hstack([u, v]), lines[i, 3])
l = np.arccos(np.dot(xyz[0, :], xyz[1, :]).clip(-1, 1))
scr = (lines[i,6]*lines[i,7] + lines[j,6]*lines[j,7]) / (lines[i,6]+lines[j,6])
lines[i] = [*nc, lines[i, 3], nrmin, nrmax, l, scr]
valid_line[j] = False
lines = lines[valid_line]
return lines, ori_lines
def icosahedron2sphere(level):
# this function use a icosahedron to sample uniformly on a sphere
a = 2 / (1 + np.sqrt(5))
M = np.array([
0, a, -1, a, 1, 0, -a, 1, 0,
0, a, 1, -a, 1, 0, a, 1, 0,
0, a, 1, 0, -a, 1, -1, 0, a,
0, a, 1, 1, 0, a, 0, -a, 1,
0, a, -1, 0, -a, -1, 1, 0, -a,
0, a, -1, -1, 0, -a, 0, -a, -1,
0, -a, 1, a, -1, 0, -a, -1, 0,
0, -a, -1, -a, -1, 0, a, -1, 0,
-a, 1, 0, -1, 0, a, -1, 0, -a,
-a, -1, 0, -1, 0, -a, -1, 0, a,
a, 1, 0, 1, 0, -a, 1, 0, a,
a, -1, 0, 1, 0, a, 1, 0, -a,
0, a, 1, -1, 0, a, -a, 1, 0,
0, a, 1, a, 1, 0, 1, 0, a,
0, a, -1, -a, 1, 0, -1, 0, -a,
0, a, -1, 1, 0, -a, a, 1, 0,
0, -a, -1, -1, 0, -a, -a, -1, 0,
0, -a, -1, a, -1, 0, 1, 0, -a,
0, -a, 1, -a, -1, 0, -1, 0, a,
0, -a, 1, 1, 0, a, a, -1, 0])
coor = M.T.reshape(3, 60, order='F').T
coor, idx = np.unique(coor, return_inverse=True, axis=0)
tri = idx.reshape(3, 20, order='F').T
# extrude
coor = list(coor / np.tile(np.linalg.norm(coor, axis=1, keepdims=True), (1, 3)))
for _ in range(level):
triN = []
for t in range(len(tri)):
n = len(coor)
coor.append((coor[tri[t, 0]] + coor[tri[t, 1]]) / 2)
coor.append((coor[tri[t, 1]] + coor[tri[t, 2]]) / 2)
coor.append((coor[tri[t, 2]] + coor[tri[t, 0]]) / 2)
triN.append([n, tri[t, 0], n+2])
triN.append([n, tri[t, 1], n+1])
triN.append([n+1, tri[t, 2], n+2])
triN.append([n, n+1, n+2])
tri = np.array(triN)
# uniquefy
coor, idx = np.unique(coor, return_inverse=True, axis=0)
tri = idx[tri]
# extrude
coor = list(coor / np.tile(np.sqrt(np.sum(coor * coor, 1, keepdims=True)), (1, 3)))
return np.array(coor), np.array(tri)
def curveFitting(inputXYZ, weight):
'''
@inputXYZ: N x 3
@weight : N x 1
'''
l = np.linalg.norm(inputXYZ, axis=1, keepdims=True)
inputXYZ = inputXYZ / l
weightXYZ = inputXYZ * weight
XX = np.sum(weightXYZ[:, 0] ** 2)
YY = np.sum(weightXYZ[:, 1] ** 2)
ZZ = np.sum(weightXYZ[:, 2] ** 2)
XY = np.sum(weightXYZ[:, 0] * weightXYZ[:, 1])
YZ = np.sum(weightXYZ[:, 1] * weightXYZ[:, 2])
ZX = np.sum(weightXYZ[:, 2] * weightXYZ[:, 0])
A = np.array([
[XX, XY, ZX],
[XY, YY, YZ],
[ZX, YZ, ZZ]])
U, S, Vh = np.linalg.svd(A)
outputNM = Vh[-1, :]
outputNM = outputNM / np.linalg.norm(outputNM)
return outputNM
def sphereHoughVote(segNormal, segLength, segScores, binRadius, orthTolerance, candiSet, force_unempty=True):
# initial guess
numLinesg = len(segNormal)
voteBinPoints = candiSet.copy()
voteBinPoints = voteBinPoints[~(voteBinPoints[:,2] < 0)]
reversValid = (segNormal[:, 2] < 0).reshape(-1)
segNormal[reversValid] = -segNormal[reversValid]
voteBinUV = xyz2uvN(voteBinPoints)
numVoteBin = len(voteBinPoints)
voteBinValues = np.zeros(numVoteBin)
for i in range(numLinesg):
tempNorm = segNormal[[i]]
tempDots = (voteBinPoints * tempNorm).sum(1)
valid = np.abs(tempDots) < np.cos((90 - binRadius) * np.pi / 180)
voteBinValues[valid] = voteBinValues[valid] + segScores[i] * segLength[i]
checkIDs1 = np.nonzero(voteBinUV[:, [1]] > np.pi / 3)[0]
voteMax = 0
checkID1Max = 0
checkID2Max = 0
checkID3Max = 0
for j in range(len(checkIDs1)):
checkID1 = checkIDs1[j]
vote1 = voteBinValues[checkID1]
if voteBinValues[checkID1] == 0 and force_unempty:
continue
checkNormal = voteBinPoints[[checkID1]]
dotProduct = (voteBinPoints * checkNormal).sum(1)
checkIDs2 = np.nonzero(np.abs(dotProduct) < np.cos((90 - orthTolerance) * np.pi / 180))[0]
for i in range(len(checkIDs2)):
checkID2 = checkIDs2[i]
if voteBinValues[checkID2] == 0 and force_unempty:
continue
vote2 = vote1 + voteBinValues[checkID2]
cpv = np.cross(voteBinPoints[checkID1], voteBinPoints[checkID2]).reshape(1, 3)
cpn = np.linalg.norm(cpv)
dotProduct = (voteBinPoints * cpv).sum(1) / cpn
checkIDs3 = np.nonzero(np.abs(dotProduct) > np.cos(orthTolerance * np.pi / 180))[0]
for k in range(len(checkIDs3)):
checkID3 = checkIDs3[k]
if voteBinValues[checkID3] == 0 and force_unempty:
continue
vote3 = vote2 + voteBinValues[checkID3]
if vote3 > voteMax:
lastStepCost = vote3 - voteMax
if voteMax != 0:
tmp = (voteBinPoints[[checkID1Max, checkID2Max, checkID3Max]] * \
voteBinPoints[[checkID1, checkID2, checkID3]]).sum(1)
lastStepAngle = np.arccos(tmp.clip(-1, 1))
else:
lastStepAngle = np.zeros(3)
checkID1Max = checkID1
checkID2Max = checkID2
checkID3Max = checkID3
voteMax = vote3
if checkID1Max == 0:
print('[WARN] sphereHoughVote: no orthogonal voting exist', file=sys.stderr)
return None, 0, 0
initXYZ = voteBinPoints[[checkID1Max, checkID2Max, checkID3Max]]
# refine
refiXYZ = np.zeros((3, 3))
dotprod = (segNormal * initXYZ[[0]]).sum(1)
valid = np.abs(dotprod) < np.cos((90 - binRadius) * np.pi / 180)
validNm = segNormal[valid]
validWt = segLength[valid] * segScores[valid]
validWt = validWt / validWt.max()
refiNM = curveFitting(validNm, validWt)
refiXYZ[0] = refiNM.copy()
dotprod = (segNormal * initXYZ[[1]]).sum(1)
valid = np.abs(dotprod) < np.cos((90 - binRadius) * np.pi / 180)
validNm = segNormal[valid]
validWt = segLength[valid] * segScores[valid]
validWt = validWt / validWt.max()
validNm = np.vstack([validNm, refiXYZ[[0]]])
validWt = np.vstack([validWt, validWt.sum(0, keepdims=1) * 0.1])
refiNM = curveFitting(validNm, validWt)
refiXYZ[1] = refiNM.copy()
refiNM = np.cross(refiXYZ[0], refiXYZ[1])
refiXYZ[2] = refiNM / np.linalg.norm(refiNM)
return refiXYZ, lastStepCost, lastStepAngle
def findMainDirectionEMA(lines):
'''compute vp from set of lines'''
# initial guess
segNormal = lines[:, :3]
segLength = lines[:, [6]]
segScores = np.ones((len(lines), 1))
shortSegValid = (segLength < 5 * np.pi / 180).reshape(-1)
segNormal = segNormal[~shortSegValid, :]
segLength = segLength[~shortSegValid]
segScores = segScores[~shortSegValid]
numLinesg = len(segNormal)
candiSet, tri = icosahedron2sphere(3)
ang = np.arccos((candiSet[tri[0,0]] * candiSet[tri[0,1]]).sum().clip(-1, 1)) / np.pi * 180
binRadius = ang / 2
initXYZ, score, angle = sphereHoughVote(segNormal, segLength, segScores, 2*binRadius, 2, candiSet)
if initXYZ is None:
print('[WARN] findMainDirectionEMA: initial failed', file=sys.stderr)
return None, score, angle
# iterative refine
iter_max = 3
candiSet, tri = icosahedron2sphere(5)
numCandi = len(candiSet)
angD = np.arccos((candiSet[tri[0, 0]] * candiSet[tri[0, 1]]).sum().clip(-1, 1)) / np.pi * 180
binRadiusD = angD / 2
curXYZ = initXYZ.copy()
tol = np.linspace(4*binRadius, 4*binRadiusD, iter_max) # shrink down ls and candi
for it in range(iter_max):
dot1 = np.abs((segNormal * curXYZ[[0]]).sum(1))
dot2 = np.abs((segNormal * curXYZ[[1]]).sum(1))
dot3 = np.abs((segNormal * curXYZ[[2]]).sum(1))
valid1 = dot1 < np.cos((90 - tol[it]) * np.pi / 180)
valid2 = dot2 < np.cos((90 - tol[it]) * np.pi / 180)
valid3 = dot3 < np.cos((90 - tol[it]) * np.pi / 180)
valid = valid1 | valid2 | valid3
if np.sum(valid) == 0:
print('[WARN] findMainDirectionEMA: zero line segments for voting', file=sys.stderr)
break
subSegNormal = segNormal[valid]
subSegLength = segLength[valid]
subSegScores = segScores[valid]
dot1 = np.abs((candiSet * curXYZ[[0]]).sum(1))
dot2 = np.abs((candiSet * curXYZ[[1]]).sum(1))
dot3 = np.abs((candiSet * curXYZ[[2]]).sum(1))
valid1 = dot1 > np.cos(tol[it] * np.pi / 180)
valid2 = dot2 > np.cos(tol[it] * np.pi / 180)
valid3 = dot3 > np.cos(tol[it] * np.pi / 180)
valid = valid1 | valid2 | valid3
if np.sum(valid) == 0:
print('[WARN] findMainDirectionEMA: zero line segments for voting', file=sys.stderr)
break
subCandiSet = candiSet[valid]
tcurXYZ, _, _ = sphereHoughVote(subSegNormal, subSegLength, subSegScores, 2*binRadiusD, 2, subCandiSet)
if tcurXYZ is None:
print('[WARN] findMainDirectionEMA: no answer found', file=sys.stderr)
break
curXYZ = tcurXYZ.copy()
mainDirect = curXYZ.copy()
mainDirect[0] = mainDirect[0] * np.sign(mainDirect[0,2])
mainDirect[1] = mainDirect[1] * np.sign(mainDirect[1,2])
mainDirect[2] = mainDirect[2] * np.sign(mainDirect[2,2])
uv = xyz2uvN(mainDirect)
I1 = np.argmax(uv[:,1])
J = np.setdiff1d(np.arange(3), I1)
I2 = np.argmin(np.abs(np.sin(uv[J,0])))
I2 = J[I2]
I3 = np.setdiff1d(np.arange(3), np.hstack([I1, I2]))
mainDirect = np.vstack([mainDirect[I1], mainDirect[I2], mainDirect[I3]])
mainDirect[0] = mainDirect[0] * np.sign(mainDirect[0,2])
mainDirect[1] = mainDirect[1] * np.sign(mainDirect[1,1])
mainDirect[2] = mainDirect[2] * np.sign(mainDirect[2,0])
mainDirect = np.vstack([mainDirect, -mainDirect])
return mainDirect, score, angle
def multi_linspace(start, stop, num):
div = (num - 1)
y = np.arange(0, num, dtype=np.float64)
steps = (stop - start) / div
return steps.reshape(-1, 1) * y + start.reshape(-1, 1)
def assignVanishingType(lines, vp, tol, area=10):
numLine = len(lines)
numVP = len(vp)
typeCost = np.zeros((numLine, numVP))
# perpendicular
for vid in range(numVP):
cosint = (lines[:, :3] * vp[[vid]]).sum(1)
typeCost[:, vid] = np.arcsin(np.abs(cosint).clip(-1, 1))
# infinity
u = np.stack([lines[:, 4], lines[:, 5]], -1)
u = u.reshape(-1, 1) * 2 * np.pi - np.pi
v = computeUVN_vec(lines[:, :3], u, lines[:, 3])
xyz = uv2xyzN_vec(np.hstack([u, v]), np.repeat(lines[:, 3], 2))
xyz = multi_linspace(xyz[0::2].reshape(-1), xyz[1::2].reshape(-1), 100)
xyz = np.vstack([blk.T for blk in np.split(xyz, numLine)])
xyz = xyz / np.linalg.norm(xyz, axis=1, keepdims=True)
for vid in range(numVP):
ang = np.arccos(np.abs((xyz * vp[[vid]]).sum(1)).clip(-1, 1))
notok = (ang < area * np.pi / 180).reshape(numLine, 100).sum(1) != 0
typeCost[notok, vid] = 100
I = typeCost.min(1)
tp = typeCost.argmin(1)
tp[I > tol] = numVP + 1
return tp, typeCost
def refitLineSegmentB(lines, vp, vpweight=0.1):
'''
Refit direction of line segments
INPUT:
lines: original line segments
vp: vannishing point
vpweight: if set to 0, lines will not change; if set to inf, lines will
be forced to pass vp
'''
numSample = 100
numLine = len(lines)
xyz = np.zeros((numSample+1, 3))
wei = np.ones((numSample+1, 1))
wei[numSample] = vpweight * numSample
lines_ali = lines.copy()
for i in range(numLine):
n = lines[i, :3]
sid = lines[i, 4] * 2 * np.pi
eid = lines[i, 5] * 2 * np.pi
if eid < sid:
x = np.linspace(sid, eid + 2 * np.pi, numSample) % (2 * np.pi)
else:
x = np.linspace(sid, eid, numSample)
u = -np.pi + x.reshape(-1, 1)
v = computeUVN(n, u, lines[i, 3])
xyz[:numSample] = uv2xyzN(np.hstack([u, v]), lines[i, 3])
xyz[numSample] = vp
outputNM = curveFitting(xyz, wei)
lines_ali[i, :3] = outputNM
return lines_ali
def paintParameterLine(parameterLine, width, height):
lines = parameterLine.copy()
panoEdgeC = np.zeros((height, width))
num_sample = max(height, width)
for i in range(len(lines)):
n = lines[i, :3]
sid = lines[i, 4] * 2 * np.pi
eid = lines[i, 5] * 2 * np.pi
if eid < sid:
x = np.linspace(sid, eid + 2 * np.pi, num_sample)
x = x % (2 * np.pi)
else:
x = np.linspace(sid, eid, num_sample)
u = -np.pi + x.reshape(-1, 1)
v = computeUVN(n, u, lines[i, 3])
xyz = uv2xyzN(np.hstack([u, v]), lines[i, 3])
uv = xyz2uvN(xyz, 1)
m = np.minimum(np.floor((uv[:,0] + np.pi) / (2 * np.pi) * width) + 1,
width).astype(np.int32)
n = np.minimum(np.floor(((np.pi / 2) - uv[:, 1]) / np.pi * height) + 1,
height).astype(np.int32)
panoEdgeC[n-1, m-1] = i
return panoEdgeC
def panoEdgeDetection(img, viewSize=320, qError=0.7, refineIter=3):
'''
line detection on panorama
INPUT:
img: image waiting for detection, double type, range 0~1
viewSize: image size of croped views
qError: set smaller if more line segment wanted
OUTPUT:
oLines: detected line segments
vp: vanishing point
views: separate views of panorama
edges: original detection of line segments in separate views
panoEdge: image for visualize line segments
'''
cutSize = viewSize
fov = np.pi / 3
xh = np.arange(-np.pi, np.pi*5/6, np.pi/6)
yh = np.zeros(xh.shape[0])
xp = np.array([-3/3, -2/3, -1/3, 0/3, 1/3, 2/3, -3/3, -2/3, -1/3, 0/3, 1/3, 2/3]) * np.pi
yp = np.array([ 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4]) * np.pi
x = np.concatenate([xh, xp, [0, 0]])
y = np.concatenate([yh, yp, [np.pi/2., -np.pi/2]])
sepScene = separatePano(img.copy(), fov, x, y, cutSize)
edge = []
for i, scene in enumerate(sepScene):
edgeMap, edgeList = lsdWrap(scene['img'])
edge.append({
'img': edgeMap,
'edgeLst': edgeList,
'vx': scene['vx'],
'vy': scene['vy'],
'fov': scene['fov'],
})
edge[-1]['panoLst'] = edgeFromImg2Pano(edge[-1])
lines, olines = combineEdgesN(edge)
clines = lines.copy()
for _ in range(refineIter):
mainDirect, score, angle = findMainDirectionEMA(clines)
tp, typeCost = assignVanishingType(lines, mainDirect[:3], 0.1, 10)
lines1 = lines[tp==0]
lines2 = lines[tp==1]
lines3 = lines[tp==2]
lines1rB = refitLineSegmentB(lines1, mainDirect[0], 0)
lines2rB = refitLineSegmentB(lines2, mainDirect[1], 0)
lines3rB = refitLineSegmentB(lines3, mainDirect[2], 0)
clines = np.vstack([lines1rB, lines2rB, lines3rB])
panoEdge1r = paintParameterLine(lines1rB, img.shape[1], img.shape[0])
panoEdge2r = paintParameterLine(lines2rB, img.shape[1], img.shape[0])
panoEdge3r = paintParameterLine(lines3rB, img.shape[1], img.shape[0])
panoEdger = np.stack([panoEdge1r, panoEdge2r, panoEdge3r], -1)
# output
olines = clines
vp = mainDirect
views = sepScene
edges = edge
panoEdge = panoEdger
return olines, vp, views, edges, panoEdge, score, angle
if __name__ == '__main__':
# disable OpenCV3's non thread safe OpenCL option
cv2.ocl.setUseOpenCL(False)
import os
import argparse
import PIL
from PIL import Image
import time
parser = argparse.ArgumentParser()
parser.add_argument('--i', required=True)
parser.add_argument('--o_prefix', required=True)
parser.add_argument('--qError', default=0.7, type=float)
parser.add_argument('--refineIter', default=3, type=int)
args = parser.parse_args()
# Read image
img_ori = np.array(Image.open(args.i).resize((1024, 512)))
# Vanishing point estimation & Line segments detection
s_time = time.time()
olines, vp, views, edges, panoEdge, score, angle = panoEdgeDetection(img_ori,
qError=args.qError,
refineIter=args.refineIter)
print('Elapsed time: %.2f' % (time.time() - s_time))
panoEdge = (panoEdge > 0)
print('Vanishing point:')
for v in vp[2::-1]:
print('%.6f %.6f %.6f' % tuple(v))
# Visualization
edg = rotatePanorama(panoEdge.astype(np.float64), vp[2::-1])
img = rotatePanorama(img_ori / 255.0, vp[2::-1])
one = img.copy() * 0.5
one[(edg > 0.5).sum(-1) > 0] = 0
one[edg[..., 0] > 0.5, 0] = 1
one[edg[..., 1] > 0.5, 1] = 1
one[edg[..., 2] > 0.5, 2] = 1
Image.fromarray((edg * 255).astype(np.uint8)).save('%s_edg.png' % args.o_prefix)
Image.fromarray((img * 255).astype(np.uint8)).save('%s_img.png' % args.o_prefix)
Image.fromarray((one * 255).astype(np.uint8)).save('%s_one.png' % args.o_prefix)
|