File size: 17,921 Bytes
bf2cc97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740a4ac
bf2cc97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740a4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d541b
740a4ac
2fc9ddd
740a4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59cf859
740a4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c48370
740a4ac
 
 
 
 
 
 
 
 
 
 
 
2c48370
740a4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c48370
740a4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39a317
 
60fe004
 
 
 
 
 
 
 
 
 
 
 
 
bf2cc97
60fe004
 
 
 
 
bf2cc97
 
66c9372
e39a317
396d368
 
 
 
 
e39a317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c9372
e39a317
 
 
 
 
bf2cc97
 
 
 
 
e39a317
bf2cc97
 
 
 
 
 
 
 
60fe004
bf2cc97
 
 
 
 
 
 
e39a317
bf2cc97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39a317
 
bf2cc97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39a317
 
bf2cc97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import express from 'express';
import { fal } from '@fal-ai/client';



const app = express();
app.use(express.json({ limit: '50mb' }));
app.use(express.urlencoded({ extended: true, limit: '50mb' }));

const PORT = process.env.PORT || 3000;

// === 全局定义限制 ===
const PROMPT_LIMIT = 4800;
const SYSTEM_PROMPT_LIMIT = 4800;
// === 限制定义结束 ===


// 定义 fal-ai/any-llm 支持的模型列表
const FAL_SUPPORTED_MODELS = [
    "anthropic/claude-3.7-sonnet",
    "anthropic/claude-3.5-sonnet",
    "anthropic/claude-3-5-haiku",
    "anthropic/claude-3-haiku",
    "google/gemini-pro-1.5",
    "google/gemini-flash-1.5",
    "google/gemini-flash-1.5-8b",
    "google/gemini-2.0-flash-001",
    "meta-llama/llama-3.2-1b-instruct",
    "meta-llama/llama-3.2-3b-instruct",
    "meta-llama/llama-3.1-8b-instruct",
    "meta-llama/llama-3.1-70b-instruct",
    "openai/gpt-4o-mini",
    "openai/gpt-4o",
    "deepseek/deepseek-r1",
    "meta-llama/llama-4-maverick",
    "meta-llama/llama-4-scout"
];

// Helper function to get owner from model ID
const getOwner = (modelId) => {
    if (modelId && modelId.includes('/')) {
        return modelId.split('/')[0];
    }
    return 'fal-ai';
}

// GET /v1/models endpoint
app.get('/v1/models', (req, res) => {
    console.log("Received request for GET /v1/models");
    try {
        const modelsData = FAL_SUPPORTED_MODELS.map(modelId => ({
            id: modelId, object: "model", created: 1700000000, owned_by: getOwner(modelId)
        }));
        res.json({ object: "list", data: modelsData });
        console.log("Successfully returned model list.");
    } catch (error) {
        console.error("Error processing GET /v1/models:", error);
        res.status(500).json({ error: "Failed to retrieve model list." });
    }
});

 

 /**
 * 将 OpenAI 格式的消息转换为 Fal AI 格式的 prompt 和 system_prompt
 * 
 * 核心逻辑:倒序遍历 messages,至多取 3 条 user/assistant 消息放到 prompt 部分,
 * chat_history 最多包含 2 条消息(user + assistant),最后一个用户消息是最新提问,不属于对话历史
 * 
 * @param messages - OpenAI 格式的消息数组
 * @returns 包含 system_prompt、prompt 和可选错误信息的对象
 * 
 * @example
 * // 基本用法:系统消息 + 用户消息
 * const messages = [
 *   { role: 'system', content: 'You are a helpful assistant.' },
 *   { role: 'user', content: 'Hello, how are you?' }
 * ];
 * const result = convertMessagesToFalPrompt(messages);
 * // result.system_prompt: 'You are a helpful assistant.'
 * // result.prompt: 'Hello, how are you?'
 * 
 * @example
 * // 多轮对话:最后一条是用户消息
 * const messages = [
 *   { role: 'system', content: 'You are helpful.' },
 *   { role: 'user', content: 'What is AI?' },
 *   { role: 'assistant', content: 'AI is artificial intelligence.' },
 *   { role: 'user', content: 'Tell me more.' }
 * ];
 * const result = convertMessagesToFalPrompt(messages);
 * // result.system_prompt: 'You are helpful.\n<chat_history>'
 * // result.prompt: 'What is AI?\nAssistant: AI is artificial intelligence.\n</chat_history>\nTell me more.'
 * 
 * @example
 * // 多轮对话:最后一条不是用户消息
 * const messages = [
 *   { role: 'user', content: 'Hello' },
 *   { role: 'assistant', content: 'Hi there!' }
 * ];
 * const result = convertMessagesToFalPrompt(messages);
 * // result.system_prompt: '<chat_history>\nHuman: Hello\nAssistant: Hi there!\n</chat_history>'
 * // result.prompt: ''
 * 
 * @description
 * 实现逻辑:
 * 1. **系统消息处理**:只使用最后一个非空系统消息,如果超出 SYSTEM_PROMPT_LIMIT 则返回错误
 * 2. **消息过滤**:自动过滤空内容消息(null、undefined、空字符串或纯空格)
 * 3. **倒序遍历**:取最后 3 条消息,根据最后一条消息类型分两种情况:
 * 
 *    **情况 A - 最后一条是用户消息**:
 *    - 取倒数第 3、第 2 条作为 chat_history(最多 2 条:user + assistant)
 *    - system_prompt: `系统消息\n<chat_history>`
 *    - prompt: `<user message>\nAssistant: <assistant message>\n</chat_history>\n<最新用户消息>`
 * 
 *    **情况 B - 最后一条不是用户消息**:
 *    - 取最后 2 条消息作为 chat_history,放在 system_prompt 中
 *    - system_prompt: `系统消息\n<chat_history>\nHuman: <user message>\nAssistant: <assistant message>\n</chat_history>`
 *    - prompt: `""`(空字符串)
 * 
 * 4. **格式约定**:
 *    - prompt 中会自动拼接 Human 消息,所以 user 消息不需要 "Human:" 前缀
 *    - system_prompt 中的 user 消息需要 "Human:" 前缀
 *    - assistant 消息始终使用 "Assistant:" 前缀
 * 
 * @note
 * - 字符限制:系统消息长度不能超过 SYSTEM_PROMPT_LIMIT (4800) 字符
 * - 消息数量:最多处理最近的 3 条对话消息(倒数第 1、2、3 条)
 * - 历史限制:chat_history 最多包含 2 条消息,避免 prompt 过长
 * - 错误处理:系统消息超限时返回错误,其他情况尽力处理
 */
function convertMessagesToFalPrompt(messages) {
	// 第一步:过滤空内容消息,分离系统消息和对话消息
	const filtered_messages = [];
	let system_message_content = "";
	
	for (const message of messages) {
		const content = (message.content === null || message.content === undefined) ? "" : String(message.content).trim();
		if (content.length > 0) {
			if (message.role === 'system') {
				system_message_content = content; // 只保留最后一个非空系统消息
			} else {
				filtered_messages.push({
					...message,
					content: content
				});
			}
		}
	}
	
	// 检查系统消息长度限制
	if (system_message_content.length > SYSTEM_PROMPT_LIMIT) {
		system_message_content = system_message_content.substring(0,SYSTEM_PROMPT_LIMIT)
	}
	
	// 如果没有对话消息,直接返回
	if (filtered_messages.length === 0) {
		return {
			system_prompt: system_message_content,
			prompt: ""
		};
	}
	
	// 第二步:倒序遍历messages,至多取3条user/assistant消息放到prompt部分
	const prompt_messages = filtered_messages.slice(-3); // 取最后3条消息
	const remaining_messages = filtered_messages.slice(0, -3); // 剩余的消息
	
	// 第三步:构建prompt部分
	let prompt_parts = [];
	
	for (const message of prompt_messages) {
		if (message.role === 'user') {
			prompt_parts.push(String(message.content));
		} else if (message.role === 'assistant') {
			prompt_parts.push(`Assistant: ${String(message.content)}`);
		}
	}
	
	const final_prompt = prompt_parts.join('\n');
	
	// 第四步:构建system_prompt部分
	let system_prompt_parts = [];
	
	// 添加系统消息(如果存在)
	if (system_message_content.length > 0) {
		system_prompt_parts.push(system_message_content);
	}
	
	// 添加剩余的对话消息
	for (const message of remaining_messages) {
		if (message.role === 'user') {
			system_prompt_parts.push(`Human: ${String(message.content)}`);
		} else if (message.role === 'assistant') {
			system_prompt_parts.push(`Assistant: ${String(message.content)}`);
		}
	}
	
	let final_system_prompt = system_prompt_parts.join('\n');
	
	// 第五步:检查system_prompt字符限制并截断
	if (final_system_prompt.length > SYSTEM_PROMPT_LIMIT) {
		// 优先保留系统消息,然后从最新的对话开始截断
		const system_part = system_message_content;
		let remaining_space = SYSTEM_PROMPT_LIMIT - system_part.length - 1; // -1 for newline
		
		if (remaining_space <= 0) {
			final_system_prompt = system_part;
		} else {
			const conversation_parts = [];
			
			// 倒序添加剩余对话,确保不超过字符限制
			for (let i = remaining_messages.length - 1; i >= 0; i--) {
				const message = remaining_messages[i];
				let message_text = "";
				
				if (message.role === 'user') {
					message_text = `Human: ${String(message.content)}`;
				} else if (message.role === 'assistant') {
					message_text = `Assistant: ${String(message.content)}`;
				}
				
				if (message_text.length + 1 <= remaining_space) { // +1 for newline
					conversation_parts.unshift(message_text);
					remaining_space -= (message_text.length + 1);
				} else {
					break; // 无法添加更多消息
				}
			}
			
			if (system_part.length > 0 && conversation_parts.length > 0) {
				final_system_prompt = system_part + '\n' + conversation_parts.join('\n');
			} else if (system_part.length > 0) {
				final_system_prompt = system_part;
			} else {
				final_system_prompt = conversation_parts.join('\n');
			}
		}
	}
	
	return {
		system_prompt: final_system_prompt,
		prompt: final_prompt
	};
}

function convertMessagesToFalPrompt1(messages) {
	let system_message_content = "";
	let prompt ="";
	for (const message of messages) {
		const content = (message.content === null || message.content === undefined) ? "" : String(message.content).trim();
		if (content.length > 0) {
			if (message.role === 'system') {
				system_message_content = content; // 只保留最后一个非空系统消息
			} else if (message.role === 'user') {
			 	prompt = content;
			}
		}
	}

	return {
		system_prompt: system_message_content,
		prompt: prompt
	};
}
// POST /v1/chat/completions endpoint (保持不变)
app.post('/v1/chat/completions', async (req, res) => {

    let authKey = null;
    let authHeader = req.headers.authorization;
    if(!authHeader)
    {
        authHeader = req.headers["x-app-token"];
    }
    if (authHeader) {
        const parts = authHeader.split(' ');
        if (parts.length === 2) {
            const scheme = parts[0];
            const credentials = parts[1];

            if (scheme === 'Bearer') {
                authKey = credentials; // JWT 或其他 token
            } else if (scheme === 'Basic') {
                // Basic 认证解码
                const decoded = Buffer.from(credentials, 'base64').toString('utf8');
                const [username, password] = decoded.split(':');
                req.auth = { username, password };
                authKey = decoded; // 或者只保存 username
            } else if (scheme === 'ApiKey' || scheme === 'Key') {
                authKey = credentials;
            }
        }
    }

    fal.config({
        credentials: authKey,
    });

    const { model, messages, stream = false, reasoning = false, ...restOpenAIParams } = req.body;

    console.log(`Received chat completion request for model: ${model}, stream: ${stream}`);

    if (!FAL_SUPPORTED_MODELS.includes(model)) {
        console.warn(`Warning: Requested model '${model}' is not in the explicitly supported list.`);
    }
    if (!model || !messages || !Array.isArray(messages) || messages.length === 0) {
        console.error("Invalid request parameters:", { model, messages: Array.isArray(messages) ? messages.length : typeof messages });
        return res.status(400).json({ error: 'Missing or invalid parameters: model and messages array are required.' });
    }

    try {
        // *** 使用更新后的转换函数 ***
        const { prompt, system_prompt } = convertMessagesToFalPrompt1(messages);

        const falInput = {
            model: model,
            prompt: prompt,
            ...(system_prompt && { system_prompt: system_prompt }),
            reasoning: !!reasoning,
        };
        console.log("Fal Input:", JSON.stringify(falInput, null, 2));
        console.log("Forwarding request to fal-ai with system-priority + separator + recency input:");
        console.log("System Prompt Length:", system_prompt?.length || 0);
        console.log("Prompt Length:", prompt?.length || 0);
        // 调试时取消注释可以查看具体内容
        console.log("--- System Prompt Start ---");
        console.log(system_prompt);
        console.log("--- System Prompt End ---");
        console.log("--- Prompt Start ---");
        console.log(prompt);
        console.log("--- Prompt End ---");


        // --- 流式/非流式处理逻辑 (保持不变) ---
        if (stream) {
            // ... 流式代码 ...
            res.setHeader('Content-Type', 'text/event-stream; charset=utf-8');
            res.setHeader('Cache-Control', 'no-cache');
            res.setHeader('Connection', 'keep-alive');
            res.setHeader('Access-Control-Allow-Origin', '*');
            res.flushHeaders();

            let previousOutput = '';

            const falStream = await fal.stream("fal-ai/any-llm", { input: falInput });

            try {
                for await (const event of falStream) {
                    const currentOutput = (event && typeof event.output === 'string') ? event.output : '';
                    const isPartial = (event && typeof event.partial === 'boolean') ? event.partial : true;
                    const errorInfo = (event && event.error) ? event.error : null;

                    if (errorInfo) {
                        console.error("Error received in fal stream event:", errorInfo);
                        const errorChunk = { id: `chatcmpl-${Date.now()}-error`, object: "chat.completion.chunk", created: Math.floor(Date.now() / 1000), model: model, choices: [{ index: 0, delta: {}, finish_reason: "error", message: { role: 'assistant', content: `Fal Stream Error: ${JSON.stringify(errorInfo)}` } }] };
                        res.write(`data: ${JSON.stringify(errorChunk)}\n\n`);
                        break;
                    }

                    let deltaContent = '';
                    if (currentOutput.startsWith(previousOutput)) {
                        deltaContent = currentOutput.substring(previousOutput.length);
                    } else if (currentOutput.length > 0) {
                        console.warn("Fal stream output mismatch detected. Sending full current output as delta.", { previousLength: previousOutput.length, currentLength: currentOutput.length });
                        deltaContent = currentOutput;
                        previousOutput = '';
                    }
                    previousOutput = currentOutput;

                    if (deltaContent || !isPartial) {
                        const openAIChunk = { id: `chatcmpl-${Date.now()}`, object: "chat.completion.chunk", created: Math.floor(Date.now() / 1000), model: model, choices: [{ index: 0, delta: { content: deltaContent }, finish_reason: isPartial === false ? "stop" : null }] };
                        res.write(`data: ${JSON.stringify(openAIChunk)}\n\n`);
                    }
                }
                res.write(`data: [DONE]\n\n`);
                res.end();
                console.log("Stream finished.");

            } catch (streamError) {
                console.error('Error during fal stream processing loop:', streamError);
                try {
                    const errorDetails = (streamError instanceof Error) ? streamError.message : JSON.stringify(streamError);
                    res.write(`data: ${JSON.stringify({ error: { message: "Stream processing error", type: "proxy_error", details: errorDetails } })}\n\n`);
                    res.write(`data: [DONE]\n\n`);
                    res.end();
                } catch (finalError) {
                    console.error('Error sending stream error message to client:', finalError);
                    if (!res.writableEnded) { res.end(); }
                }
            }
        } else {
            // --- 非流式处理 (保持不变) ---
            console.log("Executing non-stream request...");
            const result = await fal.subscribe("fal-ai/any-llm", { input: falInput, logs: true });
            console.log("Received non-stream result from fal-ai:", JSON.stringify(result, null, 2));

            if (result && result.error) {
                console.error("Fal-ai returned an error in non-stream mode:", result.error);
                return res.status(500).json({ object: "error", message: `Fal-ai error: ${JSON.stringify(result.error)}`, type: "fal_ai_error", param: null, code: null });
            }

            const openAIResponse = {
                id: `chatcmpl-${result.requestId || Date.now()}`, object: "chat.completion", created: Math.floor(Date.now() / 1000), model: model,
                choices: [{ index: 0, message: { role: "assistant", content: result.output || "" }, finish_reason: "stop" }],
                usage: { prompt_tokens: null, completion_tokens: null, total_tokens: null }, system_fingerprint: null,
                ...(result.reasoning && { fal_reasoning: result.reasoning }),
            };
            res.json(openAIResponse);
            console.log("Returned non-stream response.");
        }

    } catch (error) {
        console.error('Unhandled error in /v1/chat/completions:', error);
        if (!res.headersSent) {
            const errorMessage = (error instanceof Error) ? error.message : JSON.stringify(error);
            res.status(500).json({ error: 'Internal Server Error in Proxy', details: errorMessage });
        } else if (!res.writableEnded) {
            console.error("Headers already sent, ending response.");
            res.end();
        }
    }
});

// 启动服务器 (更新启动信息)
app.listen(PORT, () => {
    console.log(`===================================================`);
    console.log(` Fal OpenAI Proxy Server (System Top + Separator + Recency)`); // 更新策略名称
    console.log(` Listening on port: ${PORT}`);
    console.log(` Using Limits: System Prompt=${SYSTEM_PROMPT_LIMIT}, Prompt=${PROMPT_LIMIT}`);
    console.log(` Chat Completions Endpoint: POST http://localhost:${PORT}/v1/chat/completions`);
    console.log(` Models Endpoint: GET http://localhost:${PORT}/v1/models`);
    console.log(`===================================================`);
});

// 根路径响应 (更新信息)
app.get('/', (req, res) => {
    res.send('Fal OpenAI Proxy (System Top + Separator + Recency Strategy) is running.');
});