Spaces:
Sleeping
Sleeping
File size: 17,564 Bytes
1df74c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import os
import functools
import json
import tarfile
import io
import logging
import abc
import typing
import torch.utils.data
import torchaudio
from torchvision.datasets.utils import download_url
import transformers
import vocos
from modules.ChatTTS.ChatTTS.utils.infer_utils import (
count_invalid_characters,
apply_character_map,
)
class LazyDataType(typing.TypedDict):
filepath: str
speaker: str
lang: str
text: str
class DataType(LazyDataType):
text_input_ids: torch.Tensor # (batch_size, text_len)
text_attention_mask: torch.Tensor # (batch_size, text_len)
audio_mel_specs: torch.Tensor # (batch_size, audio_len*2, 100)
audio_attention_mask: torch.Tensor # (batch_size, audio_len)
class XzListTarKwargsType(typing.TypedDict):
tokenizer: typing.Union[transformers.PreTrainedTokenizer, None]
vocos_model: typing.Union[vocos.Vocos, None]
device: typing.Union[str, torch.device, None]
speakers: typing.Union[typing.Iterable[str], None]
sample_rate: typing.Union[int]
default_speaker: typing.Union[str, None]
default_lang: typing.Union[str, None]
tar_in_memory: typing.Union[bool, None]
process_ahead: typing.Union[bool, None]
class AudioFolder(torch.utils.data.Dataset, abc.ABC):
def __init__(
self,
root: str | io.BytesIO,
tokenizer: transformers.PreTrainedTokenizer | None = None,
vocos_model: vocos.Vocos | None = None,
device: str | torch.device | None = None,
speakers: typing.Iterable[str] | None = None,
sample_rate: int = 24_000,
default_speaker: str | None = None,
default_lang: str | None = None,
tar_path: str | None = None,
tar_in_memory: bool = False,
process_ahead: bool = False,
) -> None:
self.root = root
self.sample_rate = sample_rate
self.default_speaker = default_speaker
self.default_lang = default_lang
self.logger = logging.getLogger(__name__)
self.normalizer = {}
self.tokenizer = tokenizer
self.vocos = vocos_model
self.vocos_device = (
None if self.vocos is None else next(self.vocos.parameters()).device
)
self.device = device or self.vocos_device
# tar -cvf ../Xz.tar *
# tar -xf Xz.tar -C ./Xz
self.tar_path = tar_path
self.tar_file = None
self.tar_io = None
if tar_path is not None:
if tar_in_memory:
with open(tar_path, "rb") as f:
self.tar_io = io.BytesIO(f.read())
self.tar_file = tarfile.open(fileobj=self.tar_io)
else:
self.tar_file = tarfile.open(tar_path)
self.lazy_data, self.speakers = self.get_lazy_data(root, speakers)
self.text_input_ids: dict[int, torch.Tensor] = {}
self.audio_mel_specs: dict[int, torch.Tensor] = {}
if process_ahead:
for n, item in enumerate(self.lazy_data):
self.audio_mel_specs[n] = self.preprocess_audio(item["filepath"])
self.text_input_ids[n] = self.preprocess_text(
item["text"], item["lang"]
)
if self.tar_file is not None:
self.tar_file.close()
if self.tar_io is not None:
self.tar_io.close()
@abc.abstractmethod
def get_raw_data(self, root: str | io.BytesIO) -> list[dict[str, str]]: ...
@staticmethod
@abc.abstractmethod
def save_config(
save_path: str, lazy_data: list[LazyDataType], rel_path: str = "./"
) -> None: ...
def __len__(self):
return len(self.lazy_data)
def __getitem__(self, n: int) -> DataType:
lazy_data = self.lazy_data[n]
if n in self.audio_mel_specs:
audio_mel_specs = self.audio_mel_specs[n]
text_input_ids = self.text_input_ids[n]
else:
audio_mel_specs = self.preprocess_audio(lazy_data["filepath"])
text_input_ids = self.preprocess_text(lazy_data["text"], lazy_data["lang"])
self.audio_mel_specs[n] = audio_mel_specs
self.text_input_ids[n] = text_input_ids
if len(self.audio_mel_specs) == len(self.lazy_data):
if self.tar_file is not None:
self.tar_file.close()
if self.tar_io is not None:
self.tar_io.close()
text_attention_mask = torch.ones(
len(text_input_ids), device=text_input_ids.device
)
audio_attention_mask = torch.ones(
(len(audio_mel_specs) + 1) // 2,
device=audio_mel_specs.device,
)
return {
"filepath": lazy_data["filepath"],
"speaker": lazy_data["speaker"],
"lang": lazy_data["lang"],
"text": lazy_data["text"],
"text_input_ids": text_input_ids,
"text_attention_mask": text_attention_mask,
"audio_mel_specs": audio_mel_specs,
"audio_attention_mask": audio_attention_mask,
}
def get_lazy_data(
self,
root: str | io.BytesIO,
speakers: typing.Iterable[str] | None = None,
) -> tuple[list[LazyDataType], set[str]]:
if speakers is not None:
new_speakers = set(speakers)
else:
new_speakers = set()
lazy_data = []
raw_data = self.get_raw_data(root)
folder_path = os.path.dirname(root) if isinstance(root, str) else ""
for item in raw_data:
if "speaker" not in item:
item["speaker"] = self.default_speaker
if "lang" not in item:
item["lang"] = self.default_lang
if speakers is not None and item["speaker"] not in speakers:
continue
if speakers is None and item["speaker"] not in new_speakers:
new_speakers.add(item["speaker"])
if self.tar_file is None and isinstance(root, str):
filepath = os.path.join(folder_path, item["filepath"])
else:
filepath = item["filepath"]
lazy_data.append(
{
"filepath": filepath,
"speaker": item["speaker"],
"lang": item["lang"].lower(),
"text": item["text"],
}
)
return lazy_data, new_speakers
def preprocess_text(
self,
text: str,
lang: str,
) -> torch.Tensor:
invalid_characters = count_invalid_characters(text)
if len(invalid_characters):
# self.logger.log(logging.WARNING, f'Invalid characters found! : {invalid_characters}')
text = apply_character_map(text)
# if not skip_refine_text:
# text_tokens = refine_text(self.pretrain_models, text, **params_refine_text)['ids']
# text_tokens = [i[i < self.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens]
# text = self.pretrain_models['tokenizer'].batch_decode(text_tokens)
# if refine_text_only:
# return text
text = f"[Stts][spk_emb]{text}[Ptts]"
# text = f'[Stts][empty_spk]{text}[Ptts]'
text_token = self.tokenizer(
text, return_tensors="pt", add_special_tokens=False
).to(device=self.device)
return text_token["input_ids"].squeeze(0)
def preprocess_audio(self, filepath: str) -> torch.Tensor:
if self.tar_file is not None:
file = self.tar_file.extractfile(filepath)
waveform, sample_rate = torchaudio.load(file)
else:
waveform, sample_rate = torchaudio.load(filepath)
waveform = waveform.to(device=self.vocos_device)
if sample_rate != self.sample_rate:
waveform = torchaudio.functional.resample(
waveform,
orig_freq=sample_rate,
new_freq=self.sample_rate,
)
mel_spec: torch.Tensor = self.vocos.feature_extractor(waveform)
return (
mel_spec.to(device=self.device).squeeze(0).transpose(0, 1)
) # (audio_len*2, 100)
class JsonFolder(AudioFolder):
"""
In json file, each item is formatted as following example:
`{"filepath": "path/to/file.wav", "speaker": "John", "lang": "ZH", "text": "Hello"}`.
filepath is relative to the dirname of root json file.
"""
def get_raw_data(self, root: str | io.BytesIO) -> list[dict[str, str]]:
with open(root, "r", encoding="utf-8") as f:
raw_data = json.load(f)
return raw_data
@staticmethod
def save_config(
save_path: str, lazy_data: list[LazyDataType], rel_path: str = "./"
) -> None:
save_data = [item.copy() for item in lazy_data]
for item in save_data:
item["filepath"] = os.path.relpath(item["filepath"], rel_path)
with open(save_path, "w", encoding="utf-8") as f:
json.dump(save_data, f, ensure_ascii=False, indent=4)
class ListFolder(AudioFolder):
"""
In list file, each row is formatted as `filepath|speaker|lang|text` with `|` as separator.
`path/to/file.wav|John|ZH|Hello`.
filepath is relative to the dirname of root list file.
"""
def get_raw_data(self, root: str | io.BytesIO) -> list[dict[str, str]]:
raw_data = []
with open(root, "r", encoding="utf-8") as f:
for line in f.readlines():
line = line.strip().removesuffix("\n")
if len(line) == 0:
continue
filepath, speaker, lang, text = line.split(sep="|", maxsplit=3)
raw_data.append(
{
"text": text,
"filepath": filepath,
"speaker": speaker,
"lang": lang,
}
)
return raw_data
@staticmethod
def save_config(
save_path: str, lazy_data: list[LazyDataType], rel_path: str = "./"
) -> None:
save_data = [item.copy() for item in lazy_data]
for item in save_data:
item["filepath"] = os.path.relpath(item["filepath"], rel_path)
with open(save_path, "w", encoding="utf-8") as f:
for item in save_data:
f.write(
f"{item['filepath']}|{item['speaker']}|{item['lang']}|{item['text']}\n"
)
class XzListTar(ListFolder):
def __init__(
self,
*args,
root: str | io.BytesIO,
tar_path: str | None = None,
**kwargs,
):
if isinstance(root, io.BytesIO):
assert tar_path is not None
else:
# make sure root is a list file
if not root.endswith(".list"): # folder case
if os.path.isfile(root):
raise FileExistsError(f"{root} is a file!")
elif not os.path.exists(root):
os.makedirs(root)
root = os.path.join(root, "all.list")
if isinstance(root, str) and not os.path.isfile(root):
# prepare all.list
self.concat_dataset(
save_folder=os.path.dirname(root),
langs=kwargs.get("langs", ["zh", "en"]),
)
super().__init__(root, *args, tar_path=tar_path, **kwargs)
def concat_dataset(
self, save_folder: str | None = None, langs: list[str] = ["zh", "en"]
) -> None:
if save_folder is None:
save_folder = os.path.dirname(self.root)
if os.path.isfile(save_folder):
raise FileExistsError(f"{save_folder} already exists as a file!")
elif not os.path.exists(save_folder):
os.makedirs(save_folder)
lazy_data = []
for member in self.tar_file.getmembers():
if not member.isfile():
continue
if member.name.endswith(".list"):
print(member.name)
root_io = self.tar_file.extractfile(member)
lazy_data += ListFolder(root_io).lazy_data
if member.name.endswith(".json"):
print(member.name)
root_io = self.tar_file.extractfile(member)
lazy_data += JsonFolder(root_io).lazy_data
if langs is not None:
lazy_data = [item for item in lazy_data if item["lang"] in langs]
ListFolder.save_config(os.path.join(save_folder, "all.list"), lazy_data)
JsonFolder.save_config(os.path.join(save_folder, "all.json"), lazy_data)
print(f"all.list and all.json are saved to {save_folder}")
class XzListFolder(ListFolder):
"""
[XzδΉεΈ](https://space.bilibili.com/5859321)
Only look at the basename of filepath in list file. Previous folder paths are ignored.
Files are organized as `[list basename]/[file basename]`
Example tree structure:
[folder]
βββ speaker_A
β βββ 1.wav
β βββ 2.wav
βββ speaker_A.list
βββ speaker_B
β βββ 1.wav
β βββ 2.wav
βββ speaker_B.list
"""
def get_raw_data(self, root: str | io.BytesIO) -> list[dict[str, str]]:
raw_data = super().get_raw_data(root)
for item in raw_data:
item["filepath"] = os.path.join(
os.path.basename(root).removesuffix(".list"),
os.path.basename(item["filepath"]),
)
return raw_data
class AudioCollator:
def __init__(self, text_pad: int = 0, audio_pad: int = 0):
self.text_pad = text_pad
self.audio_pad = audio_pad
def __call__(self, batch: list[DataType]):
batch = [x for x in batch if x is not None]
audio_maxlen = max(len(item["audio_attention_mask"]) for item in batch)
text_maxlen = max(len(item["text_attention_mask"]) for item in batch)
filepath = []
speaker = []
lang = []
text = []
text_input_ids = []
text_attention_mask = []
audio_mel_specs = []
audio_attention_mask = []
for x in batch:
filepath.append(x["filepath"])
speaker.append(x["speaker"])
lang.append(x["lang"])
text.append(x["text"])
text_input_ids.append(
torch.nn.functional.pad(
x["text_input_ids"],
(text_maxlen - len(x["text_input_ids"]), 0),
value=self.text_pad,
)
)
text_attention_mask.append(
torch.nn.functional.pad(
x["text_attention_mask"],
(text_maxlen - len(x["text_attention_mask"]), 0),
value=0,
)
)
audio_mel_specs.append(
torch.nn.functional.pad(
x["audio_mel_specs"],
(0, 0, 0, audio_maxlen * 2 - len(x["audio_mel_specs"])),
value=self.audio_pad,
)
)
audio_attention_mask.append(
torch.nn.functional.pad(
x["audio_attention_mask"],
(0, audio_maxlen - len(x["audio_attention_mask"])),
value=0,
)
)
return {
"filepath": filepath,
"speaker": speaker,
"lang": lang,
"text": text,
"text_input_ids": torch.stack(text_input_ids),
"text_attention_mask": torch.stack(text_attention_mask),
"audio_mel_specs": torch.stack(audio_mel_specs),
"audio_attention_mask": torch.stack(audio_attention_mask),
}
def formalize_xz_list(src_folder: str):
for root, _, files in os.walk(src_folder):
for file in files:
if file.endswith(".list"):
filepath = os.path.join(root, file)
print(filepath)
lazy_data = XzListFolder(filepath).lazy_data
XzListFolder.save_config(filepath, lazy_data, rel_path=src_folder)
def concat_dataset(
src_folder: str, save_folder: str | None = None, langs: list[str] = ["zh", "en"]
) -> None:
if save_folder is None:
save_folder = src_folder
if os.path.isfile(save_folder):
raise FileExistsError(f"{save_folder} already exists as a file!")
elif not os.path.exists(save_folder):
os.makedirs(save_folder)
lazy_data = []
same_folder = os.path.samefile(src_folder, save_folder)
for root, _, files in os.walk(src_folder):
for file in files:
filepath = os.path.join(root, file)
if same_folder and file in ("all.list", "all.json"):
continue
if file.endswith(".list"):
print(filepath)
lazy_data += ListFolder(filepath).lazy_data
if file.endswith(".json"):
print(filepath)
lazy_data += JsonFolder(filepath).lazy_data
if langs is not None:
lazy_data = [item for item in lazy_data if item["lang"] in langs]
ListFolder.save_config(
os.path.join(save_folder, "all.list"), lazy_data, rel_path=save_folder
)
JsonFolder.save_config(
os.path.join(save_folder, "all.json"), lazy_data, rel_path=save_folder
)
print(f"all.list and all.json are saved to {save_folder}")
|