File size: 9,618 Bytes
2f22782
 
 
 
 
197fb1d
2f22782
197fb1d
2f22782
 
197fb1d
 
 
 
f9d3528
197fb1d
2f22782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197fb1d
 
 
 
 
f3ddcb4
197fb1d
2f22782
 
 
 
 
 
 
 
 
 
74625f5
 
 
 
2f22782
 
74625f5
 
 
 
 
2f22782
74625f5
 
f9d3528
74625f5
2f22782
 
 
 
74625f5
2f22782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import streamlit as st
import pandas as pd
import os
import time
import json
import tqdm
import datasets

from huggingface_hub import HfApi
from huggingface_hub import hf_hub_download

from utils.upload_hub import upload_scores_to_hub, file_name_decode
from utils.Evaluation_answer_txt import Evaluation_answer_txt
from utils.hub_info import get_model_size
from utils.filterable_dataframe import filterable_dataframe

# st.set_page_config(layout="wide")
st.set_page_config(layout="centered")
st.markdown(
    f"""

    <style>

        .appview-container .main .block-container{{

            max-width: 80%;

            padding: 50px;

        }}

    </style>

    """,
    unsafe_allow_html=True
)

@st.cache_data
def download_gold_answer(repo, filename, token, force_download=False):
    ret = hf_hub_download(repo_id=repo, repo_type='dataset',  filename=filename, token=token, force_download=force_download)
    return ret


HUB_TOKEN = st.secrets['hf']
HUB_API = HfApi(token=HUB_TOKEN)

LEADERBOARD_DATASET_REPO = 'zhaorui-nb/leaderboard-score'
# Setting1 Setting2 Setting3

ANSWER_REPO = 'zhaorui-nb/leaderboard-answer'
GET_GOLD_ANSWER_PATH = {
    'Setting1': download_gold_answer(ANSWER_REPO, 'dataset/Setting1_test_answer.txt', HUB_TOKEN),
    'Setting2': download_gold_answer(ANSWER_REPO, 'dataset/Setting2_test_answer.txt', HUB_TOKEN),
    'Setting3': download_gold_answer(ANSWER_REPO, 'dataset/Setting3_test_answer.txt', HUB_TOKEN)
}


# cache the dataset in the session state
def get_leaderboard_df():
    with st.spinner('Loading leaderboard data...'):
        if st.session_state.get('leaderboard_df') is None:
            dataset = datasets.load_dataset(LEADERBOARD_DATASET_REPO)  
            df = pd.DataFrame(dataset['train'])

            # replace model name column @ to /
            df['model name'] = df['model name'].str.replace('@', '/')

            #### add model size
            df['model size'] = df['model name'].apply(lambda x: get_model_size(x, token=HUB_TOKEN))

            st.session_state['leaderboard_df'] = df
            return df
        else:
            return st.session_state['leaderboard_df']


st.title('De-identification Model Leaderboard')

try:



    with st.container():
        # columns ['model name', 'dataset', 'method', 'file name', 'submitter', 'MICRO precision', 'MICRO recall', 'MICRO f1', 'MACRO precision', 'MACRO recall', 'MACRO f1', 'detail result']
        df = get_leaderboard_df()

        with st.sidebar: # st.expander("Leaderboard", expanded=True):
            default_columns = [c for c in df.columns if c not in ['file name', 'submitter', 'MICRO precision', 'MICRO recall', 'MACRO precision', 'MACRO recall',  'detail result']]
            selected_columns = st.multiselect('Select columns to display', df.columns, default=default_columns)
            # add filterable dataframe
            filtered_df = filterable_dataframe(df)

        # hit the user can filter the leaderboard at the sidebar
        st.write("setting the filter at the sidebar")         

        leaderboard_df =    st.dataframe(filtered_df[selected_columns], selection_mode='multi-row', on_select='rerun', key='leaderboard')
        
        st.subheader("Detail Result")
        det_ind = st.session_state.leaderboard['selection']['rows']
        if len(det_ind) == 0:
            st.write(f'Please check the boxes in the Model Leaderboard to view the detailed results.')
        else:
            col_detial = st.columns(len(det_ind))
            for i, dind in enumerate(det_ind):
                with col_detial[i]:
                    dis = f"{df.iloc[dind]['model name']}___{df.iloc[dind]['dataset']}___{df.iloc[dind]['method']}"
                    color = [st.success, st.info, st.warning, st.error]
                    color[i % 4](dis)
                    
                    dic = json.loads(df.iloc[dind]['detail result'])
                    dt_df = pd.DataFrame(dic).T
                    st.dataframe(dt_df)

except Exception as e:
    st.error(f"Error: {e}")

st.markdown("---")

# ############################################################################################################
# ############################################### Evaluation_answer_txt
# ############################################################################################################

model_name_input = ''
dataset_input = ''
method_input = ''
file_name = ''
submitter_input = ''

if 'score_json' not in st.session_state:
    st.session_state['score_json'] = None

@st.cache_data()
def get_file_info(uploaded_file):
    filename_info = file_name_decode(uploaded_file.name)
    return filename_info

@st.cache_data()
def eval_answer_txt(set_name, uploaded_file):
    print(f"eval_answer_txt: {time.time()}" , set_name)
    
    if set_name not in GET_GOLD_ANSWER_PATH:
        return None
    gold_answer_txt = GET_GOLD_ANSWER_PATH[set_name]
    eval = Evaluation_answer_txt(gold_answer_txt, uploaded_file)
    score_json = eval.eval()
    return score_json

def clear_score_json():
    st.session_state['score_json'] = None

st.title("Model Evaluation")
st.write("Support file naming: [{Organization@Model}][{Dataaset}][{Method}]{Filename}.txt")

col_upload = st.columns([3,1])
with col_upload[0]:
    uploaded_file = st.file_uploader("Please upload the answer.txt file", type=["txt"], key="uploaded_file", on_change=clear_score_json)
with col_upload[1]:
    if not uploaded_file:
        st.warning("please upload file")
        st.session_state['score_json'] = None
    else:
        st.success("file uploaded successfully")
        
        filename_info = get_file_info(uploaded_file)
        if filename_info:
            model_name_input = filename_info['model_name']
            dataset_input = filename_info['dataset']
            method_input = filename_info['method']
            file_name = filename_info['file_name']

col_score = st.columns([7,5])
if uploaded_file:
    with col_score[1], st.container(border=True):
        model_name_input = st.text_input("model name", model_name_input)
        dataset_input = st.text_input("dataset", dataset_input)
        method_input = st.text_input("method", method_input)
        file_name = st.text_input("file name", file_name)
        submitter_input = st.text_input("submitter", submitter_input)
        check_all_fill_in = model_name_input and dataset_input and method_input and file_name and submitter_input
        
        col_sumit_and_recalculate = st.columns(2)
        with col_sumit_and_recalculate[0]:
            calculate_btn = st.button("calculate", type='secondary', use_container_width=True)
        with col_sumit_and_recalculate[1]:
            submit_btn = st.button("SUBMIT", type='primary', use_container_width=True , disabled=not check_all_fill_in)
    
    if calculate_btn or st.session_state['score_json'] is None:
        set_name = dataset_input
        st.session_state['score_json'] = eval_answer_txt(set_name, uploaded_file)
        if st.session_state['score_json']:
            st.success("evaluation success")
        else:
            st.error("evaluation failed, please check the file content or set the correct dataset name.")

if st.session_state['score_json']:
    with col_score[0], st.container(border=True):
        df = pd.DataFrame(st.session_state['score_json']).T
        # split the column MICRO_AVERAGE and MACRO_AVERAGE into another dataframe
        tag_df = df.drop(["MICRO_AVERAGE", "MACRO_AVERAGE"], axis=0)
        avg_df = df.loc[["MICRO_AVERAGE", "MACRO_AVERAGE"]]

        col_sort_func = st.columns(2)
        
        with col_sort_func[0]:
            sorted_column = st.selectbox("选择排序列", df.columns)

        with col_sort_func[1]:
            ascending = st.radio("Sort Order", ["Ascending", "Descending"])

        tag_df = tag_df.sort_values(by=sorted_column, ascending=ascending=="Ascending")

        st.dataframe(pd.concat([tag_df, avg_df]), use_container_width=True)


    if not check_all_fill_in:
        st.warning("Please fill in the complete information.")

    if submit_btn:
        if st.session_state['score_json']:
            score_json = st.session_state['score_json']
            
            leaderboard_dict = {
                "model name": model_name_input,
                "dataset": dataset_input,
                "method": method_input,
                "file name": file_name,
                "submitter": submitter_input,

                "MICRO precision": score_json["MICRO_AVERAGE"]["precision"],
                "MICRO recall": score_json["MICRO_AVERAGE"]["recall"],
                "MICRO f1": score_json["MICRO_AVERAGE"]["f1"],
                "MACRO precision": score_json["MACRO_AVERAGE"]["precision"],
                "MACRO recall": score_json["MACRO_AVERAGE"]["recall"],
                "MACRO f1": score_json["MACRO_AVERAGE"]["f1"],
                "detail result": json.dumps(score_json,indent=4) #score_json
            }

            repo_file_path = f'data/train-[{model_name_input}][{dataset_input}][{method_input}][{file_name}].json'
            upload_res = upload_scores_to_hub(HUB_API, leaderboard_dict, repo_file_path, hub_repo=LEADERBOARD_DATASET_REPO)
            if upload_res:
                st.success(f"submit success")
                st.success(f"your score at here: {upload_res}")
            else:
                st.error("submit failed")