File size: 19,404 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""SQLAlchemy wrapper around a database."""
from __future__ import annotations

import warnings
from typing import Any, Dict, Iterable, List, Literal, Optional, Sequence, Union

import sqlalchemy
from sqlalchemy import MetaData, Table, create_engine, inspect, select, text
from sqlalchemy.engine import Engine
from sqlalchemy.exc import ProgrammingError, SQLAlchemyError
from sqlalchemy.schema import CreateTable
from sqlalchemy.types import NullType

from langchain.utils import get_from_env


def _format_index(index: sqlalchemy.engine.interfaces.ReflectedIndex) -> str:
    return (
        f'Name: {index["name"]}, Unique: {index["unique"]},'
        f' Columns: {str(index["column_names"])}'
    )


def truncate_word(content: Any, *, length: int, suffix: str = "...") -> str:
    """
    Truncate a string to a certain number of words, based on the max string
    length.
    """

    if not isinstance(content, str) or length <= 0:
        return content

    if len(content) <= length:
        return content

    return content[: length - len(suffix)].rsplit(" ", 1)[0] + suffix


class SQLDatabase:
    """SQLAlchemy wrapper around a database."""

    def __init__(
        self,
        engine: Engine,
        schema: Optional[str] = None,
        metadata: Optional[MetaData] = None,
        ignore_tables: Optional[List[str]] = None,
        include_tables: Optional[List[str]] = None,
        sample_rows_in_table_info: int = 3,
        indexes_in_table_info: bool = False,
        custom_table_info: Optional[dict] = None,
        view_support: bool = False,
        max_string_length: int = 300,
    ):
        """Create engine from database URI."""
        self._engine = engine
        self._schema = schema
        if include_tables and ignore_tables:
            raise ValueError("Cannot specify both include_tables and ignore_tables")

        self._inspector = inspect(self._engine)

        # including view support by adding the views as well as tables to the all
        # tables list if view_support is True
        self._all_tables = set(
            self._inspector.get_table_names(schema=schema)
            + (self._inspector.get_view_names(schema=schema) if view_support else [])
        )

        self._include_tables = set(include_tables) if include_tables else set()
        if self._include_tables:
            missing_tables = self._include_tables - self._all_tables
            if missing_tables:
                raise ValueError(
                    f"include_tables {missing_tables} not found in database"
                )
        self._ignore_tables = set(ignore_tables) if ignore_tables else set()
        if self._ignore_tables:
            missing_tables = self._ignore_tables - self._all_tables
            if missing_tables:
                raise ValueError(
                    f"ignore_tables {missing_tables} not found in database"
                )
        usable_tables = self.get_usable_table_names()
        self._usable_tables = set(usable_tables) if usable_tables else self._all_tables

        if not isinstance(sample_rows_in_table_info, int):
            raise TypeError("sample_rows_in_table_info must be an integer")

        self._sample_rows_in_table_info = sample_rows_in_table_info
        self._indexes_in_table_info = indexes_in_table_info

        self._custom_table_info = custom_table_info
        if self._custom_table_info:
            if not isinstance(self._custom_table_info, dict):
                raise TypeError(
                    "table_info must be a dictionary with table names as keys and the "
                    "desired table info as values"
                )
            # only keep the tables that are also present in the database
            intersection = set(self._custom_table_info).intersection(self._all_tables)
            self._custom_table_info = dict(
                (table, self._custom_table_info[table])
                for table in self._custom_table_info
                if table in intersection
            )

        self._max_string_length = max_string_length

        self._metadata = metadata or MetaData()
        # including view support if view_support = true
        self._metadata.reflect(
            views=view_support,
            bind=self._engine,
            only=list(self._usable_tables),
            schema=self._schema,
        )

    @classmethod
    def from_uri(
        cls, database_uri: str, engine_args: Optional[dict] = None, **kwargs: Any
    ) -> SQLDatabase:
        """Construct a SQLAlchemy engine from URI."""
        _engine_args = engine_args or {}
        return cls(create_engine(database_uri, **_engine_args), **kwargs)

    @classmethod
    def from_databricks(
        cls,
        catalog: str,
        schema: str,
        host: Optional[str] = None,
        api_token: Optional[str] = None,
        warehouse_id: Optional[str] = None,
        cluster_id: Optional[str] = None,
        engine_args: Optional[dict] = None,
        **kwargs: Any,
    ) -> SQLDatabase:
        """
        Class method to create an SQLDatabase instance from a Databricks connection.
        This method requires the 'databricks-sql-connector' package. If not installed,
        it can be added using `pip install databricks-sql-connector`.

        Args:
            catalog (str): The catalog name in the Databricks database.
            schema (str): The schema name in the catalog.
            host (Optional[str]): The Databricks workspace hostname, excluding
                'https://' part. If not provided, it attempts to fetch from the
                environment variable 'DATABRICKS_HOST'. If still unavailable and if
                running in a Databricks notebook, it defaults to the current workspace
                hostname. Defaults to None.
            api_token (Optional[str]): The Databricks personal access token for
                accessing the Databricks SQL warehouse or the cluster. If not provided,
                it attempts to fetch from 'DATABRICKS_TOKEN'. If still unavailable
                and running in a Databricks notebook, a temporary token for the current
                user is generated. Defaults to None.
            warehouse_id (Optional[str]): The warehouse ID in the Databricks SQL. If
                provided, the method configures the connection to use this warehouse.
                Cannot be used with 'cluster_id'. Defaults to None.
            cluster_id (Optional[str]): The cluster ID in the Databricks Runtime. If
                provided, the method configures the connection to use this cluster.
                Cannot be used with 'warehouse_id'. If running in a Databricks notebook
                and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the
                cluster the notebook is attached to. Defaults to None.
            engine_args (Optional[dict]): The arguments to be used when connecting
                Databricks. Defaults to None.
            **kwargs (Any): Additional keyword arguments for the `from_uri` method.

        Returns:
            SQLDatabase: An instance of SQLDatabase configured with the provided
                Databricks connection details.

        Raises:
            ValueError: If 'databricks-sql-connector' is not found, or if both
                'warehouse_id' and 'cluster_id' are provided, or if neither
                'warehouse_id' nor 'cluster_id' are provided and it's not executing
                inside a Databricks notebook.
        """
        try:
            from databricks import sql  # noqa: F401
        except ImportError:
            raise ValueError(
                "databricks-sql-connector package not found, please install with"
                " `pip install databricks-sql-connector`"
            )
        context = None
        try:
            from dbruntime.databricks_repl_context import get_context

            context = get_context()
        except ImportError:
            pass

        default_host = context.browserHostName if context else None
        if host is None:
            host = get_from_env("host", "DATABRICKS_HOST", default_host)

        default_api_token = context.apiToken if context else None
        if api_token is None:
            api_token = get_from_env("api_token", "DATABRICKS_TOKEN", default_api_token)

        if warehouse_id is None and cluster_id is None:
            if context:
                cluster_id = context.clusterId
            else:
                raise ValueError(
                    "Need to provide either 'warehouse_id' or 'cluster_id'."
                )

        if warehouse_id and cluster_id:
            raise ValueError("Can't have both 'warehouse_id' or 'cluster_id'.")

        if warehouse_id:
            http_path = f"/sql/1.0/warehouses/{warehouse_id}"
        else:
            http_path = f"/sql/protocolv1/o/0/{cluster_id}"

        uri = (
            f"databricks://token:{api_token}@{host}?"
            f"http_path={http_path}&catalog={catalog}&schema={schema}"
        )
        return cls.from_uri(database_uri=uri, engine_args=engine_args, **kwargs)

    @classmethod
    def from_cnosdb(
        cls,
        url: str = "127.0.0.1:8902",
        user: str = "root",
        password: str = "",
        tenant: str = "cnosdb",
        database: str = "public",
    ) -> SQLDatabase:
        """
        Class method to create an SQLDatabase instance from a CnosDB connection.
        This method requires the 'cnos-connector' package. If not installed, it
        can be added using `pip install cnos-connector`.

        Args:
            url (str): The HTTP connection host name and port number of the CnosDB
                service, excluding "http://" or "https://", with a default value
                of "127.0.0.1:8902".
            user (str): The username used to connect to the CnosDB service, with a
                default value of "root".
            password (str): The password of the user connecting to the CnosDB service,
                with a default value of "".
            tenant (str): The name of the tenant used to connect to the CnosDB service,
                with a default value of "cnosdb".
            database (str): The name of the database in the CnosDB tenant.

        Returns:
            SQLDatabase: An instance of SQLDatabase configured with the provided
            CnosDB connection details.
        """
        try:
            from cnosdb_connector import make_cnosdb_langchain_uri

            uri = make_cnosdb_langchain_uri(url, user, password, tenant, database)
            return cls.from_uri(database_uri=uri)
        except ImportError:
            raise ValueError(
                "cnos-connector package not found, please install with"
                " `pip install cnos-connector`"
            )

    @property
    def dialect(self) -> str:
        """Return string representation of dialect to use."""
        return self._engine.dialect.name

    def get_usable_table_names(self) -> Iterable[str]:
        """Get names of tables available."""
        if self._include_tables:
            return sorted(self._include_tables)
        return sorted(self._all_tables - self._ignore_tables)

    def get_table_names(self) -> Iterable[str]:
        """Get names of tables available."""
        warnings.warn(
            "This method is deprecated - please use `get_usable_table_names`."
        )
        return self.get_usable_table_names()

    @property
    def table_info(self) -> str:
        """Information about all tables in the database."""
        return self.get_table_info()

    def get_table_info(self, table_names: Optional[List[str]] = None) -> str:
        """Get information about specified tables.

        Follows best practices as specified in: Rajkumar et al, 2022
        (https://arxiv.org/abs/2204.00498)

        If `sample_rows_in_table_info`, the specified number of sample rows will be
        appended to each table description. This can increase performance as
        demonstrated in the paper.
        """
        all_table_names = self.get_usable_table_names()
        if table_names is not None:
            missing_tables = set(table_names).difference(all_table_names)
            if missing_tables:
                raise ValueError(f"table_names {missing_tables} not found in database")
            all_table_names = table_names

        meta_tables = [
            tbl
            for tbl in self._metadata.sorted_tables
            if tbl.name in set(all_table_names)
            and not (self.dialect == "sqlite" and tbl.name.startswith("sqlite_"))
        ]

        tables = []
        for table in meta_tables:
            if self._custom_table_info and table.name in self._custom_table_info:
                tables.append(self._custom_table_info[table.name])
                continue

            # Ignore JSON datatyped columns
            for k, v in table.columns.items():
                if type(v.type) is NullType:
                    table._columns.remove(v)

            # add create table command
            create_table = str(CreateTable(table).compile(self._engine))
            table_info = f"{create_table.rstrip()}"
            has_extra_info = (
                self._indexes_in_table_info or self._sample_rows_in_table_info
            )
            if has_extra_info:
                table_info += "\n\n/*"
            if self._indexes_in_table_info:
                table_info += f"\n{self._get_table_indexes(table)}\n"
            if self._sample_rows_in_table_info:
                table_info += f"\n{self._get_sample_rows(table)}\n"
            if has_extra_info:
                table_info += "*/"
            tables.append(table_info)
        tables.sort()
        final_str = "\n\n".join(tables)
        return final_str

    def _get_table_indexes(self, table: Table) -> str:
        indexes = self._inspector.get_indexes(table.name)
        indexes_formatted = "\n".join(map(_format_index, indexes))
        return f"Table Indexes:\n{indexes_formatted}"

    def _get_sample_rows(self, table: Table) -> str:
        # build the select command
        command = select(table).limit(self._sample_rows_in_table_info)

        # save the columns in string format
        columns_str = "\t".join([col.name for col in table.columns])

        try:
            # get the sample rows
            with self._engine.connect() as connection:
                sample_rows_result = connection.execute(command)  # type: ignore
                # shorten values in the sample rows
                sample_rows = list(
                    map(lambda ls: [str(i)[:100] for i in ls], sample_rows_result)
                )

            # save the sample rows in string format
            sample_rows_str = "\n".join(["\t".join(row) for row in sample_rows])

        # in some dialects when there are no rows in the table a
        # 'ProgrammingError' is returned
        except ProgrammingError:
            sample_rows_str = ""

        return (
            f"{self._sample_rows_in_table_info} rows from {table.name} table:\n"
            f"{columns_str}\n"
            f"{sample_rows_str}"
        )

    def _execute(
        self,
        command: str,
        fetch: Union[Literal["all"], Literal["one"]] = "all",
    ) -> Sequence[Dict[str, Any]]:
        """
        Executes SQL command through underlying engine.

        If the statement returns no rows, an empty list is returned.
        """
        with self._engine.begin() as connection:
            if self._schema is not None:
                if self.dialect == "snowflake":
                    connection.exec_driver_sql(
                        "ALTER SESSION SET search_path = %s", (self._schema,)
                    )
                elif self.dialect == "bigquery":
                    connection.exec_driver_sql("SET @@dataset_id=?", (self._schema,))
                elif self.dialect == "mssql":
                    pass
                elif self.dialect == "trino":
                    connection.exec_driver_sql("USE ?", (self._schema,))
                elif self.dialect == "duckdb":
                    # Unclear which parameterized argument syntax duckdb supports.
                    # The docs for the duckdb client say they support multiple,
                    # but `duckdb_engine` seemed to struggle with all of them:
                    # https://github.com/Mause/duckdb_engine/issues/796
                    connection.exec_driver_sql(f"SET search_path TO {self._schema}")
                elif self.dialect == "oracle":
                    connection.exec_driver_sql(
                        f"ALTER SESSION SET CURRENT_SCHEMA = {self._schema}"
                    )
                else:  # postgresql and other compatible dialects
                    connection.exec_driver_sql("SET search_path TO %s", (self._schema,))
            cursor = connection.execute(text(command))
            if cursor.returns_rows:
                if fetch == "all":
                    result = [x._asdict() for x in cursor.fetchall()]
                elif fetch == "one":
                    first_result = cursor.fetchone()
                    result = [] if first_result is None else [first_result._asdict()]
                else:
                    raise ValueError("Fetch parameter must be either 'one' or 'all'")
                return result
        return []

    def run(
        self,
        command: str,
        fetch: Union[Literal["all"], Literal["one"]] = "all",
    ) -> str:
        """Execute a SQL command and return a string representing the results.

        If the statement returns rows, a string of the results is returned.
        If the statement returns no rows, an empty string is returned.
        """
        result = self._execute(command, fetch)
        # Convert columns values to string to avoid issues with sqlalchemy
        # truncating text
        res = [
            tuple(truncate_word(c, length=self._max_string_length) for c in r.values())
            for r in result
        ]
        if not res:
            return ""
        else:
            return str(res)

    def get_table_info_no_throw(self, table_names: Optional[List[str]] = None) -> str:
        """Get information about specified tables.

        Follows best practices as specified in: Rajkumar et al, 2022
        (https://arxiv.org/abs/2204.00498)

        If `sample_rows_in_table_info`, the specified number of sample rows will be
        appended to each table description. This can increase performance as
        demonstrated in the paper.
        """
        try:
            return self.get_table_info(table_names)
        except ValueError as e:
            """Format the error message"""
            return f"Error: {e}"

    def run_no_throw(
        self,
        command: str,
        fetch: Union[Literal["all"], Literal["one"]] = "all",
    ) -> str:
        """Execute a SQL command and return a string representing the results.

        If the statement returns rows, a string of the results is returned.
        If the statement returns no rows, an empty string is returned.

        If the statement throws an error, the error message is returned.
        """
        try:
            return self.run(command, fetch)
        except SQLAlchemyError as e:
            """Format the error message"""
            return f"Error: {e}"