File size: 17,582 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
"""Retriever wrapper for Google Vertex AI Search."""
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence

from langchain_core.documents import Document
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain_core.retrievers import BaseRetriever

from langchain.callbacks.manager import CallbackManagerForRetrieverRun
from langchain.utilities.vertexai import get_client_info
from langchain.utils import get_from_dict_or_env

if TYPE_CHECKING:
    from google.api_core.client_options import ClientOptions
    from google.cloud.discoveryengine_v1beta import (
        ConversationalSearchServiceClient,
        SearchRequest,
        SearchResult,
        SearchServiceClient,
    )


class _BaseGoogleVertexAISearchRetriever(BaseModel):
    project_id: str
    """Google Cloud Project ID."""
    data_store_id: str
    """Vertex AI Search data store ID."""
    location_id: str = "global"
    """Vertex AI Search data store location."""
    serving_config_id: str = "default_config"
    """Vertex AI Search serving config ID."""
    credentials: Any = None
    """The default custom credentials (google.auth.credentials.Credentials) to use
    when making API calls. If not provided, credentials will be ascertained from
    the environment."""
    engine_data_type: int = Field(default=0, ge=0, le=2)
    """ Defines the Vertex AI Search data type
    0 - Unstructured data 
    1 - Structured data
    2 - Website data
    """

    @root_validator(pre=True)
    def validate_environment(cls, values: Dict) -> Dict:
        """Validates the environment."""
        try:
            from google.cloud import discoveryengine_v1beta  # noqa: F401
        except ImportError as exc:
            raise ImportError(
                "google.cloud.discoveryengine is not installed."
                "Please install it with pip install "
                "google-cloud-discoveryengine>=0.11.0"
            ) from exc
        try:
            from google.api_core.exceptions import InvalidArgument  # noqa: F401
        except ImportError as exc:
            raise ImportError(
                "google.api_core.exceptions is not installed. "
                "Please install it with pip install google-api-core"
            ) from exc

        values["project_id"] = get_from_dict_or_env(values, "project_id", "PROJECT_ID")

        try:
            # For backwards compatibility
            search_engine_id = get_from_dict_or_env(
                values, "search_engine_id", "SEARCH_ENGINE_ID"
            )

            if search_engine_id:
                import warnings

                warnings.warn(
                    "The `search_engine_id` parameter is deprecated. Use `data_store_id` instead.",  # noqa: E501
                    DeprecationWarning,
                )
                values["data_store_id"] = search_engine_id
        except:  # noqa: E722
            pass

        values["data_store_id"] = get_from_dict_or_env(
            values, "data_store_id", "DATA_STORE_ID"
        )

        return values

    @property
    def client_options(self) -> "ClientOptions":
        from google.api_core.client_options import ClientOptions

        return ClientOptions(
            api_endpoint=f"{self.location_id}-discoveryengine.googleapis.com"
            if self.location_id != "global"
            else None
        )

    def _convert_structured_search_response(
        self, results: Sequence[SearchResult]
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        import json

        from google.protobuf.json_format import MessageToDict

        documents: List[Document] = []

        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )

            documents.append(
                Document(
                    page_content=json.dumps(document_dict.get("struct_data", {})),
                    metadata={"id": document_dict["id"], "name": document_dict["name"]},
                )
            )

        return documents

    def _convert_unstructured_search_response(
        self, results: Sequence[SearchResult], chunk_type: str
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        from google.protobuf.json_format import MessageToDict

        documents: List[Document] = []

        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )
            derived_struct_data = document_dict.get("derived_struct_data")
            if not derived_struct_data:
                continue

            doc_metadata = document_dict.get("struct_data", {})
            doc_metadata["id"] = document_dict["id"]

            if chunk_type not in derived_struct_data:
                continue

            for chunk in derived_struct_data[chunk_type]:
                doc_metadata["source"] = derived_struct_data.get("link", "")

                if chunk_type == "extractive_answers":
                    doc_metadata["source"] += f":{chunk.get('pageNumber', '')}"

                documents.append(
                    Document(
                        page_content=chunk.get("content", ""), metadata=doc_metadata
                    )
                )

        return documents

    def _convert_website_search_response(
        self, results: Sequence[SearchResult], chunk_type: str
    ) -> List[Document]:
        """Converts a sequence of search results to a list of LangChain documents."""
        from google.protobuf.json_format import MessageToDict

        documents: List[Document] = []
        chunk_type = "extractive_answers"

        for result in results:
            document_dict = MessageToDict(
                result.document._pb, preserving_proto_field_name=True
            )
            derived_struct_data = document_dict.get("derived_struct_data")
            if not derived_struct_data:
                continue

            doc_metadata = document_dict.get("struct_data", {})
            doc_metadata["id"] = document_dict["id"]
            doc_metadata["source"] = derived_struct_data.get("link", "")

            if chunk_type not in derived_struct_data:
                continue

            text_field = "snippet" if chunk_type == "snippets" else "content"

            for chunk in derived_struct_data[chunk_type]:
                documents.append(
                    Document(
                        page_content=chunk.get(text_field, ""), metadata=doc_metadata
                    )
                )

        if not documents:
            print(f"No {chunk_type} could be found.")
            if chunk_type == "extractive_answers":
                print(
                    "Make sure that your data store is using Advanced Website "
                    "Indexing.\n"
                    "https://cloud.google.com/generative-ai-app-builder/docs/about-advanced-features#advanced-website-indexing"  # noqa: E501
                )

        return documents


class GoogleVertexAISearchRetriever(BaseRetriever, _BaseGoogleVertexAISearchRetriever):
    """`Google Vertex AI Search` retriever.

    For a detailed explanation of the Vertex AI Search concepts
    and configuration parameters, refer to the product documentation.
    https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction
    """

    filter: Optional[str] = None
    """Filter expression."""
    get_extractive_answers: bool = False
    """If True return Extractive Answers, otherwise return Extractive Segments or Snippets."""  # noqa: E501
    max_documents: int = Field(default=5, ge=1, le=100)
    """The maximum number of documents to return."""
    max_extractive_answer_count: int = Field(default=1, ge=1, le=5)
    """The maximum number of extractive answers returned in each search result.
    At most 5 answers will be returned for each SearchResult.
    """
    max_extractive_segment_count: int = Field(default=1, ge=1, le=1)
    """The maximum number of extractive segments returned in each search result.
    Currently one segment will be returned for each SearchResult.
    """
    query_expansion_condition: int = Field(default=1, ge=0, le=2)
    """Specification to determine under which conditions query expansion should occur.
    0 - Unspecified query expansion condition. In this case, server behavior defaults 
        to disabled
    1 - Disabled query expansion. Only the exact search query is used, even if 
        SearchResponse.total_size is zero.
    2 - Automatic query expansion built by the Search API.
    """
    spell_correction_mode: int = Field(default=2, ge=0, le=2)
    """Specification to determine under which conditions query expansion should occur.
    0 - Unspecified spell correction mode. In this case, server behavior defaults 
        to auto.
    1 - Suggestion only. Search API will try to find a spell suggestion if there is any
        and put in the `SearchResponse.corrected_query`.
        The spell suggestion will not be used as the search query.
    2 - Automatic spell correction built by the Search API.
        Search will be based on the corrected query if found.
    """

    _client: SearchServiceClient
    _serving_config: str

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.ignore
        arbitrary_types_allowed = True
        underscore_attrs_are_private = True

    def __init__(self, **kwargs: Any) -> None:
        """Initializes private fields."""
        try:
            from google.cloud.discoveryengine_v1beta import SearchServiceClient
        except ImportError as exc:
            raise ImportError(
                "google.cloud.discoveryengine is not installed."
                "Please install it with pip install google-cloud-discoveryengine"
            ) from exc

        super().__init__(**kwargs)

        #  For more information, refer to:
        # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
        self._client = SearchServiceClient(
            credentials=self.credentials,
            client_options=self.client_options,
            client_info=get_client_info(module="vertex-ai-search"),
        )

        self._serving_config = self._client.serving_config_path(
            project=self.project_id,
            location=self.location_id,
            data_store=self.data_store_id,
            serving_config=self.serving_config_id,
        )

    def _create_search_request(self, query: str) -> SearchRequest:
        """Prepares a SearchRequest object."""
        from google.cloud.discoveryengine_v1beta import SearchRequest

        query_expansion_spec = SearchRequest.QueryExpansionSpec(
            condition=self.query_expansion_condition,
        )

        spell_correction_spec = SearchRequest.SpellCorrectionSpec(
            mode=self.spell_correction_mode
        )

        if self.engine_data_type == 0:
            if self.get_extractive_answers:
                extractive_content_spec = (
                    SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
                        max_extractive_answer_count=self.max_extractive_answer_count,
                    )
                )
            else:
                extractive_content_spec = (
                    SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
                        max_extractive_segment_count=self.max_extractive_segment_count,
                    )
                )
            content_search_spec = SearchRequest.ContentSearchSpec(
                extractive_content_spec=extractive_content_spec
            )
        elif self.engine_data_type == 1:
            content_search_spec = None
        elif self.engine_data_type == 2:
            content_search_spec = SearchRequest.ContentSearchSpec(
                extractive_content_spec=SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
                    max_extractive_answer_count=self.max_extractive_answer_count,
                ),
                snippet_spec=SearchRequest.ContentSearchSpec.SnippetSpec(
                    return_snippet=True
                ),
            )
        else:
            raise NotImplementedError(
                "Only data store type 0 (Unstructured), 1 (Structured),"
                "or 2 (Website) are supported currently."
                + f" Got {self.engine_data_type}"
            )

        return SearchRequest(
            query=query,
            filter=self.filter,
            serving_config=self._serving_config,
            page_size=self.max_documents,
            content_search_spec=content_search_spec,
            query_expansion_spec=query_expansion_spec,
            spell_correction_spec=spell_correction_spec,
        )

    def _get_relevant_documents(
        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
    ) -> List[Document]:
        """Get documents relevant for a query."""
        from google.api_core.exceptions import InvalidArgument

        search_request = self._create_search_request(query)

        try:
            response = self._client.search(search_request)
        except InvalidArgument as exc:
            raise type(exc)(
                exc.message
                + " This might be due to engine_data_type not set correctly."
            )

        if self.engine_data_type == 0:
            chunk_type = (
                "extractive_answers"
                if self.get_extractive_answers
                else "extractive_segments"
            )
            documents = self._convert_unstructured_search_response(
                response.results, chunk_type
            )
        elif self.engine_data_type == 1:
            documents = self._convert_structured_search_response(response.results)
        elif self.engine_data_type == 2:
            chunk_type = (
                "extractive_answers" if self.get_extractive_answers else "snippets"
            )
            documents = self._convert_website_search_response(
                response.results, chunk_type
            )
        else:
            raise NotImplementedError(
                "Only data store type 0 (Unstructured), 1 (Structured),"
                "or 2 (Website) are supported currently."
                + f" Got {self.engine_data_type}"
            )

        return documents


class GoogleVertexAIMultiTurnSearchRetriever(
    BaseRetriever, _BaseGoogleVertexAISearchRetriever
):
    """`Google Vertex AI Search` retriever for multi-turn conversations."""

    conversation_id: str = "-"
    """Vertex AI Search Conversation ID."""

    _client: ConversationalSearchServiceClient
    _serving_config: str

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.ignore
        arbitrary_types_allowed = True
        underscore_attrs_are_private = True

    def __init__(self, **kwargs: Any):
        super().__init__(**kwargs)
        from google.cloud.discoveryengine_v1beta import (
            ConversationalSearchServiceClient,
        )

        self._client = ConversationalSearchServiceClient(
            credentials=self.credentials,
            client_options=self.client_options,
            client_info=get_client_info(module="vertex-ai-search"),
        )

        self._serving_config = self._client.serving_config_path(
            project=self.project_id,
            location=self.location_id,
            data_store=self.data_store_id,
            serving_config=self.serving_config_id,
        )

        if self.engine_data_type == 1:
            raise NotImplementedError(
                "Data store type 1 (Structured)"
                "is not currently supported for multi-turn search."
                + f" Got {self.engine_data_type}"
            )

    def _get_relevant_documents(
        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
    ) -> List[Document]:
        """Get documents relevant for a query."""
        from google.cloud.discoveryengine_v1beta import (
            ConverseConversationRequest,
            TextInput,
        )

        request = ConverseConversationRequest(
            name=self._client.conversation_path(
                self.project_id,
                self.location_id,
                self.data_store_id,
                self.conversation_id,
            ),
            serving_config=self._serving_config,
            query=TextInput(input=query),
        )
        response = self._client.converse_conversation(request)

        if self.engine_data_type == 2:
            return self._convert_website_search_response(
                response.search_results, "extractive_answers"
            )

        return self._convert_unstructured_search_response(
            response.search_results, "extractive_answers"
        )


class GoogleCloudEnterpriseSearchRetriever(GoogleVertexAISearchRetriever):
    """`Google Vertex Search API` retriever alias for backwards compatibility.
    DEPRECATED: Use `GoogleVertexAISearchRetriever` instead.
    """

    def __init__(self, **data: Any):
        import warnings

        warnings.warn(
            "GoogleCloudEnterpriseSearchRetriever is deprecated, use GoogleVertexAISearchRetriever",  # noqa: E501
            DeprecationWarning,
        )

        super().__init__(**data)