Spaces:
Runtime error
Runtime error
File size: 6,452 Bytes
129cd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
)
if TYPE_CHECKING:
from zep_python import Memory, MemorySearchResult, Message, NotFoundError
logger = logging.getLogger(__name__)
class ZepChatMessageHistory(BaseChatMessageHistory):
"""Chat message history that uses Zep as a backend.
Recommended usage::
# Set up Zep Chat History
zep_chat_history = ZepChatMessageHistory(
session_id=session_id,
url=ZEP_API_URL,
api_key=<your_api_key>,
)
# Use a standard ConversationBufferMemory to encapsulate the Zep chat history
memory = ConversationBufferMemory(
memory_key="chat_history", chat_memory=zep_chat_history
)
Zep provides long-term conversation storage for LLM apps. The server stores,
summarizes, embeds, indexes, and enriches conversational AI chat
histories, and exposes them via simple, low-latency APIs.
For server installation instructions and more, see:
https://docs.getzep.com/deployment/quickstart/
This class is a thin wrapper around the zep-python package. Additional
Zep functionality is exposed via the `zep_summary` and `zep_messages`
properties.
For more information on the zep-python package, see:
https://github.com/getzep/zep-python
"""
def __init__(
self,
session_id: str,
url: str = "http://localhost:8000",
api_key: Optional[str] = None,
) -> None:
try:
from zep_python import ZepClient
except ImportError:
raise ImportError(
"Could not import zep-python package. "
"Please install it with `pip install zep-python`."
)
self.zep_client = ZepClient(base_url=url, api_key=api_key)
self.session_id = session_id
@property
def messages(self) -> List[BaseMessage]: # type: ignore
"""Retrieve messages from Zep memory"""
zep_memory: Optional[Memory] = self._get_memory()
if not zep_memory:
return []
messages: List[BaseMessage] = []
# Extract summary, if present, and messages
if zep_memory.summary:
if len(zep_memory.summary.content) > 0:
messages.append(SystemMessage(content=zep_memory.summary.content))
if zep_memory.messages:
msg: Message
for msg in zep_memory.messages:
metadata: Dict = {
"uuid": msg.uuid,
"created_at": msg.created_at,
"token_count": msg.token_count,
"metadata": msg.metadata,
}
if msg.role == "ai":
messages.append(
AIMessage(content=msg.content, additional_kwargs=metadata)
)
else:
messages.append(
HumanMessage(content=msg.content, additional_kwargs=metadata)
)
return messages
@property
def zep_messages(self) -> List[Message]:
"""Retrieve summary from Zep memory"""
zep_memory: Optional[Memory] = self._get_memory()
if not zep_memory:
return []
return zep_memory.messages
@property
def zep_summary(self) -> Optional[str]:
"""Retrieve summary from Zep memory"""
zep_memory: Optional[Memory] = self._get_memory()
if not zep_memory or not zep_memory.summary:
return None
return zep_memory.summary.content
def _get_memory(self) -> Optional[Memory]:
"""Retrieve memory from Zep"""
from zep_python import NotFoundError
try:
zep_memory: Memory = self.zep_client.memory.get_memory(self.session_id)
except NotFoundError:
logger.warning(
f"Session {self.session_id} not found in Zep. Returning None"
)
return None
return zep_memory
def add_user_message(
self, message: str, metadata: Optional[Dict[str, Any]] = None
) -> None:
"""Convenience method for adding a human message string to the store.
Args:
message: The string contents of a human message.
metadata: Optional metadata to attach to the message.
"""
self.add_message(HumanMessage(content=message), metadata=metadata)
def add_ai_message(
self, message: str, metadata: Optional[Dict[str, Any]] = None
) -> None:
"""Convenience method for adding an AI message string to the store.
Args:
message: The string contents of an AI message.
metadata: Optional metadata to attach to the message.
"""
self.add_message(AIMessage(content=message), metadata=metadata)
def add_message(
self, message: BaseMessage, metadata: Optional[Dict[str, Any]] = None
) -> None:
"""Append the message to the Zep memory history"""
from zep_python import Memory, Message
zep_message = Message(
content=message.content, role=message.type, metadata=metadata
)
zep_memory = Memory(messages=[zep_message])
self.zep_client.memory.add_memory(self.session_id, zep_memory)
def search(
self, query: str, metadata: Optional[Dict] = None, limit: Optional[int] = None
) -> List[MemorySearchResult]:
"""Search Zep memory for messages matching the query"""
from zep_python import MemorySearchPayload
payload: MemorySearchPayload = MemorySearchPayload(
text=query, metadata=metadata
)
return self.zep_client.memory.search_memory(
self.session_id, payload, limit=limit
)
def clear(self) -> None:
"""Clear session memory from Zep. Note that Zep is long-term storage for memory
and this is not advised unless you have specific data retention requirements.
"""
try:
self.zep_client.memory.delete_memory(self.session_id)
except NotFoundError:
logger.warning(
f"Session {self.session_id} not found in Zep. Skipping delete."
)
|