File size: 6,452 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from __future__ import annotations

import logging
from typing import TYPE_CHECKING, Any, Dict, List, Optional

from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    HumanMessage,
    SystemMessage,
)

if TYPE_CHECKING:
    from zep_python import Memory, MemorySearchResult, Message, NotFoundError

logger = logging.getLogger(__name__)


class ZepChatMessageHistory(BaseChatMessageHistory):
    """Chat message history that uses Zep as a backend.

    Recommended usage::

        # Set up Zep Chat History
        zep_chat_history = ZepChatMessageHistory(
            session_id=session_id,
            url=ZEP_API_URL,
            api_key=<your_api_key>,
        )

        # Use a standard ConversationBufferMemory to encapsulate the Zep chat history
        memory = ConversationBufferMemory(
            memory_key="chat_history", chat_memory=zep_chat_history
        )


    Zep provides long-term conversation storage for LLM apps. The server stores,
    summarizes, embeds, indexes, and enriches conversational AI chat
    histories, and exposes them via simple, low-latency APIs.

    For server installation instructions and more, see:
    https://docs.getzep.com/deployment/quickstart/

    This class is a thin wrapper around the zep-python package. Additional
    Zep functionality is exposed via the `zep_summary` and `zep_messages`
    properties.

    For more information on the zep-python package, see:
    https://github.com/getzep/zep-python
    """

    def __init__(
        self,
        session_id: str,
        url: str = "http://localhost:8000",
        api_key: Optional[str] = None,
    ) -> None:
        try:
            from zep_python import ZepClient
        except ImportError:
            raise ImportError(
                "Could not import zep-python package. "
                "Please install it with `pip install zep-python`."
            )

        self.zep_client = ZepClient(base_url=url, api_key=api_key)
        self.session_id = session_id

    @property
    def messages(self) -> List[BaseMessage]:  # type: ignore
        """Retrieve messages from Zep memory"""
        zep_memory: Optional[Memory] = self._get_memory()
        if not zep_memory:
            return []

        messages: List[BaseMessage] = []
        # Extract summary, if present, and messages
        if zep_memory.summary:
            if len(zep_memory.summary.content) > 0:
                messages.append(SystemMessage(content=zep_memory.summary.content))
        if zep_memory.messages:
            msg: Message
            for msg in zep_memory.messages:
                metadata: Dict = {
                    "uuid": msg.uuid,
                    "created_at": msg.created_at,
                    "token_count": msg.token_count,
                    "metadata": msg.metadata,
                }
                if msg.role == "ai":
                    messages.append(
                        AIMessage(content=msg.content, additional_kwargs=metadata)
                    )
                else:
                    messages.append(
                        HumanMessage(content=msg.content, additional_kwargs=metadata)
                    )

        return messages

    @property
    def zep_messages(self) -> List[Message]:
        """Retrieve summary from Zep memory"""
        zep_memory: Optional[Memory] = self._get_memory()
        if not zep_memory:
            return []

        return zep_memory.messages

    @property
    def zep_summary(self) -> Optional[str]:
        """Retrieve summary from Zep memory"""
        zep_memory: Optional[Memory] = self._get_memory()
        if not zep_memory or not zep_memory.summary:
            return None

        return zep_memory.summary.content

    def _get_memory(self) -> Optional[Memory]:
        """Retrieve memory from Zep"""
        from zep_python import NotFoundError

        try:
            zep_memory: Memory = self.zep_client.memory.get_memory(self.session_id)
        except NotFoundError:
            logger.warning(
                f"Session {self.session_id} not found in Zep. Returning None"
            )
            return None
        return zep_memory

    def add_user_message(
        self, message: str, metadata: Optional[Dict[str, Any]] = None
    ) -> None:
        """Convenience method for adding a human message string to the store.

        Args:
            message: The string contents of a human message.
            metadata: Optional metadata to attach to the message.
        """
        self.add_message(HumanMessage(content=message), metadata=metadata)

    def add_ai_message(
        self, message: str, metadata: Optional[Dict[str, Any]] = None
    ) -> None:
        """Convenience method for adding an AI message string to the store.

        Args:
            message: The string contents of an AI message.
            metadata: Optional metadata to attach to the message.
        """
        self.add_message(AIMessage(content=message), metadata=metadata)

    def add_message(
        self, message: BaseMessage, metadata: Optional[Dict[str, Any]] = None
    ) -> None:
        """Append the message to the Zep memory history"""
        from zep_python import Memory, Message

        zep_message = Message(
            content=message.content, role=message.type, metadata=metadata
        )
        zep_memory = Memory(messages=[zep_message])

        self.zep_client.memory.add_memory(self.session_id, zep_memory)

    def search(
        self, query: str, metadata: Optional[Dict] = None, limit: Optional[int] = None
    ) -> List[MemorySearchResult]:
        """Search Zep memory for messages matching the query"""
        from zep_python import MemorySearchPayload

        payload: MemorySearchPayload = MemorySearchPayload(
            text=query, metadata=metadata
        )

        return self.zep_client.memory.search_memory(
            self.session_id, payload, limit=limit
        )

    def clear(self) -> None:
        """Clear session memory from Zep. Note that Zep is long-term storage for memory
        and this is not advised unless you have specific data retention requirements.
        """
        try:
            self.zep_client.memory.delete_memory(self.session_id)
        except NotFoundError:
            logger.warning(
                f"Session {self.session_id} not found in Zep. Skipping delete."
            )