File size: 9,172 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from __future__ import annotations

import importlib.util
import logging
from typing import Any, List, Mapping, Optional

from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import Extra

from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import BaseLLM
from langchain.llms.utils import enforce_stop_tokens

DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
DEFAULT_BATCH_SIZE = 4

logger = logging.getLogger(__name__)


class HuggingFacePipeline(BaseLLM):
    """HuggingFace Pipeline API.

    To use, you should have the ``transformers`` python package installed.

    Only supports `text-generation`, `text2text-generation` and `summarization` for now.

    Example using from_model_id:
        .. code-block:: python

            from langchain.llms import HuggingFacePipeline
            hf = HuggingFacePipeline.from_model_id(
                model_id="gpt2",
                task="text-generation",
                pipeline_kwargs={"max_new_tokens": 10},
            )
    Example passing pipeline in directly:
        .. code-block:: python

            from langchain.llms import HuggingFacePipeline
            from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

            model_id = "gpt2"
            tokenizer = AutoTokenizer.from_pretrained(model_id)
            model = AutoModelForCausalLM.from_pretrained(model_id)
            pipe = pipeline(
                "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
            )
            hf = HuggingFacePipeline(pipeline=pipe)
    """

    pipeline: Any  #: :meta private:
    model_id: str = DEFAULT_MODEL_ID
    """Model name to use."""
    model_kwargs: Optional[dict] = None
    """Keyword arguments passed to the model."""
    pipeline_kwargs: Optional[dict] = None
    """Keyword arguments passed to the pipeline."""
    batch_size: int = DEFAULT_BATCH_SIZE
    """Batch size to use when passing multiple documents to generate."""

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @classmethod
    def from_model_id(
        cls,
        model_id: str,
        task: str,
        device: Optional[int] = -1,
        device_map: Optional[str] = None,
        model_kwargs: Optional[dict] = None,
        pipeline_kwargs: Optional[dict] = None,
        batch_size: int = DEFAULT_BATCH_SIZE,
        **kwargs: Any,
    ) -> HuggingFacePipeline:
        """Construct the pipeline object from model_id and task."""
        try:
            from transformers import (
                AutoModelForCausalLM,
                AutoModelForSeq2SeqLM,
                AutoTokenizer,
            )
            from transformers import pipeline as hf_pipeline

        except ImportError:
            raise ValueError(
                "Could not import transformers python package. "
                "Please install it with `pip install transformers`."
            )

        _model_kwargs = model_kwargs or {}
        tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)

        try:
            if task == "text-generation":
                model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs)
            elif task in ("text2text-generation", "summarization"):
                model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
            else:
                raise ValueError(
                    f"Got invalid task {task}, "
                    f"currently only {VALID_TASKS} are supported"
                )
        except ImportError as e:
            raise ValueError(
                f"Could not load the {task} model due to missing dependencies."
            ) from e

        if tokenizer.pad_token is None:
            tokenizer.pad_token_id = model.config.eos_token_id

        if (
            getattr(model, "is_loaded_in_4bit", False)
            or getattr(model, "is_loaded_in_8bit", False)
        ) and device is not None:
            logger.warning(
                f"Setting the `device` argument to None from {device} to avoid "
                "the error caused by attempting to move the model that was already "
                "loaded on the GPU using the Accelerate module to the same or "
                "another device."
            )
            device = None

        if device is not None and importlib.util.find_spec("torch") is not None:
            import torch

            cuda_device_count = torch.cuda.device_count()
            if device < -1 or (device >= cuda_device_count):
                raise ValueError(
                    f"Got device=={device}, "
                    f"device is required to be within [-1, {cuda_device_count})"
                )
            if device_map is not None and device < 0:
                device = None
            if device is not None and device < 0 and cuda_device_count > 0:
                logger.warning(
                    "Device has %d GPUs available. "
                    "Provide device={deviceId} to `from_model_id` to use available"
                    "GPUs for execution. deviceId is -1 (default) for CPU and "
                    "can be a positive integer associated with CUDA device id.",
                    cuda_device_count,
                )
        if "trust_remote_code" in _model_kwargs:
            _model_kwargs = {
                k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
            }
        _pipeline_kwargs = pipeline_kwargs or {}
        pipeline = hf_pipeline(
            task=task,
            model=model,
            tokenizer=tokenizer,
            device=device,
            device_map=device_map,
            batch_size=batch_size,
            model_kwargs=_model_kwargs,
            **_pipeline_kwargs,
        )
        if pipeline.task not in VALID_TASKS:
            raise ValueError(
                f"Got invalid task {pipeline.task}, "
                f"currently only {VALID_TASKS} are supported"
            )
        return cls(
            pipeline=pipeline,
            model_id=model_id,
            model_kwargs=_model_kwargs,
            pipeline_kwargs=_pipeline_kwargs,
            batch_size=batch_size,
            **kwargs,
        )

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {
            "model_id": self.model_id,
            "model_kwargs": self.model_kwargs,
            "pipeline_kwargs": self.pipeline_kwargs,
        }

    @property
    def _llm_type(self) -> str:
        return "huggingface_pipeline"

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> LLMResult:
        # List to hold all results
        text_generations: List[str] = []

        for i in range(0, len(prompts), self.batch_size):
            batch_prompts = prompts[i : i + self.batch_size]

            # Process batch of prompts
            responses = self.pipeline(batch_prompts)

            # Process each response in the batch
            for j, response in enumerate(responses):
                if isinstance(response, list):
                    # if model returns multiple generations, pick the top one
                    response = response[0]

                if self.pipeline.task == "text-generation":
                    try:
                        from transformers.pipelines.text_generation import ReturnType

                        remove_prompt = (
                            self.pipeline._postprocess_params.get("return_type")
                            != ReturnType.NEW_TEXT
                        )
                    except Exception as e:
                        logger.warning(
                            f"Unable to extract pipeline return_type. "
                            f"Received error:\n\n{e}"
                        )
                        remove_prompt = True
                    if remove_prompt:
                        text = response["generated_text"][len(batch_prompts[j]) :]
                    else:
                        text = response["generated_text"]
                elif self.pipeline.task == "text2text-generation":
                    text = response["generated_text"]
                elif self.pipeline.task == "summarization":
                    text = response["summary_text"]
                else:
                    raise ValueError(
                        f"Got invalid task {self.pipeline.task}, "
                        f"currently only {VALID_TASKS} are supported"
                    )
                if stop:
                    # Enforce stop tokens
                    text = enforce_stop_tokens(text, stop)

                # Append the processed text to results
                text_generations.append(text)

        return LLMResult(
            generations=[[Generation(text=text)] for text in text_generations]
        )