Spaces:
Runtime error
Runtime error
File size: 12,116 Bytes
129cd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional
import requests
from langchain_core.pydantic_v1 import (
BaseModel,
Extra,
Field,
PrivateAttr,
root_validator,
validator,
)
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
__all__ = ["Databricks"]
class _DatabricksClientBase(BaseModel, ABC):
"""A base JSON API client that talks to Databricks."""
api_url: str
api_token: str
def post_raw(self, request: Any) -> Any:
headers = {"Authorization": f"Bearer {self.api_token}"}
response = requests.post(self.api_url, headers=headers, json=request)
# TODO: error handling and automatic retries
if not response.ok:
raise ValueError(f"HTTP {response.status_code} error: {response.text}")
return response.json()
@abstractmethod
def post(self, request: Any) -> Any:
...
class _DatabricksServingEndpointClient(_DatabricksClientBase):
"""An API client that talks to a Databricks serving endpoint."""
host: str
endpoint_name: str
@root_validator(pre=True)
def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "api_url" not in values:
host = values["host"]
endpoint_name = values["endpoint_name"]
api_url = f"https://{host}/serving-endpoints/{endpoint_name}/invocations"
values["api_url"] = api_url
return values
def post(self, request: Any) -> Any:
# See https://docs.databricks.com/machine-learning/model-serving/score-model-serving-endpoints.html
wrapped_request = {"dataframe_records": [request]}
response = self.post_raw(wrapped_request)["predictions"]
# For a single-record query, the result is not a list.
if isinstance(response, list):
response = response[0]
return response
class _DatabricksClusterDriverProxyClient(_DatabricksClientBase):
"""An API client that talks to a Databricks cluster driver proxy app."""
host: str
cluster_id: str
cluster_driver_port: str
@root_validator(pre=True)
def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "api_url" not in values:
host = values["host"]
cluster_id = values["cluster_id"]
port = values["cluster_driver_port"]
api_url = f"https://{host}/driver-proxy-api/o/0/{cluster_id}/{port}"
values["api_url"] = api_url
return values
def post(self, request: Any) -> Any:
return self.post_raw(request)
def get_repl_context() -> Any:
"""Gets the notebook REPL context if running inside a Databricks notebook.
Returns None otherwise.
"""
try:
from dbruntime.databricks_repl_context import get_context
return get_context()
except ImportError:
raise ImportError(
"Cannot access dbruntime, not running inside a Databricks notebook."
)
def get_default_host() -> str:
"""Gets the default Databricks workspace hostname.
Raises an error if the hostname cannot be automatically determined.
"""
host = os.getenv("DATABRICKS_HOST")
if not host:
try:
host = get_repl_context().browserHostName
if not host:
raise ValueError("context doesn't contain browserHostName.")
except Exception as e:
raise ValueError(
"host was not set and cannot be automatically inferred. Set "
f"environment variable 'DATABRICKS_HOST'. Received error: {e}"
)
# TODO: support Databricks CLI profile
host = host.lstrip("https://").lstrip("http://").rstrip("/")
return host
def get_default_api_token() -> str:
"""Gets the default Databricks personal access token.
Raises an error if the token cannot be automatically determined.
"""
if api_token := os.getenv("DATABRICKS_TOKEN"):
return api_token
try:
api_token = get_repl_context().apiToken
if not api_token:
raise ValueError("context doesn't contain apiToken.")
except Exception as e:
raise ValueError(
"api_token was not set and cannot be automatically inferred. Set "
f"environment variable 'DATABRICKS_TOKEN'. Received error: {e}"
)
# TODO: support Databricks CLI profile
return api_token
class Databricks(LLM):
"""Databricks serving endpoint or a cluster driver proxy app for LLM.
It supports two endpoint types:
* **Serving endpoint** (recommended for both production and development).
We assume that an LLM was registered and deployed to a serving endpoint.
To wrap it as an LLM you must have "Can Query" permission to the endpoint.
Set ``endpoint_name`` accordingly and do not set ``cluster_id`` and
``cluster_driver_port``.
The expected model signature is:
* inputs::
[{"name": "prompt", "type": "string"},
{"name": "stop", "type": "list[string]"}]
* outputs: ``[{"type": "string"}]``
* **Cluster driver proxy app** (recommended for interactive development).
One can load an LLM on a Databricks interactive cluster and start a local HTTP
server on the driver node to serve the model at ``/`` using HTTP POST method
with JSON input/output.
Please use a port number between ``[3000, 8000]`` and let the server listen to
the driver IP address or simply ``0.0.0.0`` instead of localhost only.
To wrap it as an LLM you must have "Can Attach To" permission to the cluster.
Set ``cluster_id`` and ``cluster_driver_port`` and do not set ``endpoint_name``.
The expected server schema (using JSON schema) is:
* inputs::
{"type": "object",
"properties": {
"prompt": {"type": "string"},
"stop": {"type": "array", "items": {"type": "string"}}},
"required": ["prompt"]}`
* outputs: ``{"type": "string"}``
If the endpoint model signature is different or you want to set extra params,
you can use `transform_input_fn` and `transform_output_fn` to apply necessary
transformations before and after the query.
"""
host: str = Field(default_factory=get_default_host)
"""Databricks workspace hostname.
If not provided, the default value is determined by
* the ``DATABRICKS_HOST`` environment variable if present, or
* the hostname of the current Databricks workspace if running inside
a Databricks notebook attached to an interactive cluster in "single user"
or "no isolation shared" mode.
"""
api_token: str = Field(default_factory=get_default_api_token)
"""Databricks personal access token.
If not provided, the default value is determined by
* the ``DATABRICKS_TOKEN`` environment variable if present, or
* an automatically generated temporary token if running inside a Databricks
notebook attached to an interactive cluster in "single user" or
"no isolation shared" mode.
"""
endpoint_name: Optional[str] = None
"""Name of the model serving endpoint.
You must specify the endpoint name to connect to a model serving endpoint.
You must not set both ``endpoint_name`` and ``cluster_id``.
"""
cluster_id: Optional[str] = None
"""ID of the cluster if connecting to a cluster driver proxy app.
If neither ``endpoint_name`` nor ``cluster_id`` is not provided and the code runs
inside a Databricks notebook attached to an interactive cluster in "single user"
or "no isolation shared" mode, the current cluster ID is used as default.
You must not set both ``endpoint_name`` and ``cluster_id``.
"""
cluster_driver_port: Optional[str] = None
"""The port number used by the HTTP server running on the cluster driver node.
The server should listen on the driver IP address or simply ``0.0.0.0`` to connect.
We recommend the server using a port number between ``[3000, 8000]``.
"""
model_kwargs: Optional[Dict[str, Any]] = None
"""Extra parameters to pass to the endpoint."""
transform_input_fn: Optional[Callable] = None
"""A function that transforms ``{prompt, stop, **kwargs}`` into a JSON-compatible
request object that the endpoint accepts.
For example, you can apply a prompt template to the input prompt.
"""
transform_output_fn: Optional[Callable[..., str]] = None
"""A function that transforms the output from the endpoint to the generated text.
"""
_client: _DatabricksClientBase = PrivateAttr()
class Config:
extra = Extra.forbid
underscore_attrs_are_private = True
@validator("cluster_id", always=True)
def set_cluster_id(cls, v: Any, values: Dict[str, Any]) -> Optional[str]:
if v and values["endpoint_name"]:
raise ValueError("Cannot set both endpoint_name and cluster_id.")
elif values["endpoint_name"]:
return None
elif v:
return v
else:
try:
if v := get_repl_context().clusterId:
return v
raise ValueError("Context doesn't contain clusterId.")
except Exception as e:
raise ValueError(
"Neither endpoint_name nor cluster_id was set. "
"And the cluster_id cannot be automatically determined. Received"
f" error: {e}"
)
@validator("cluster_driver_port", always=True)
def set_cluster_driver_port(cls, v: Any, values: Dict[str, Any]) -> Optional[str]:
if v and values["endpoint_name"]:
raise ValueError("Cannot set both endpoint_name and cluster_driver_port.")
elif values["endpoint_name"]:
return None
elif v is None:
raise ValueError(
"Must set cluster_driver_port to connect to a cluster driver."
)
elif int(v) <= 0:
raise ValueError(f"Invalid cluster_driver_port: {v}")
else:
return v
@validator("model_kwargs", always=True)
def set_model_kwargs(cls, v: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
if v:
assert "prompt" not in v, "model_kwargs must not contain key 'prompt'"
assert "stop" not in v, "model_kwargs must not contain key 'stop'"
return v
def __init__(self, **data: Any):
super().__init__(**data)
if self.endpoint_name:
self._client = _DatabricksServingEndpointClient(
host=self.host,
api_token=self.api_token,
endpoint_name=self.endpoint_name,
)
elif self.cluster_id and self.cluster_driver_port:
self._client = _DatabricksClusterDriverProxyClient(
host=self.host,
api_token=self.api_token,
cluster_id=self.cluster_id,
cluster_driver_port=self.cluster_driver_port,
)
else:
raise ValueError(
"Must specify either endpoint_name or cluster_id/cluster_driver_port."
)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "databricks"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Queries the LLM endpoint with the given prompt and stop sequence."""
# TODO: support callbacks
request = {"prompt": prompt, "stop": stop}
request.update(kwargs)
if self.model_kwargs:
request.update(self.model_kwargs)
if self.transform_input_fn:
request = self.transform_input_fn(**request)
response = self._client.post(request)
if self.transform_output_fn:
response = self.transform_output_fn(response)
return response
|