File size: 18,439 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
"""Interfaces to be implemented by general evaluators."""
from __future__ import annotations

import asyncio
import logging
from abc import ABC, abstractmethod
from enum import Enum
from functools import partial
from typing import Any, Optional, Sequence, Tuple, Union
from warnings import warn

from langchain_core.agents import AgentAction
from langchain_core.language_models import BaseLanguageModel

from langchain.chains.base import Chain

logger = logging.getLogger(__name__)


class EvaluatorType(str, Enum):
    """The types of the evaluators."""

    QA = "qa"
    """Question answering evaluator, which grades answers to questions
    directly using an LLM."""
    COT_QA = "cot_qa"
    """Chain of thought question answering evaluator, which grades
    answers to questions using
    chain of thought 'reasoning'."""
    CONTEXT_QA = "context_qa"
    """Question answering evaluator that incorporates 'context' in the response."""
    PAIRWISE_STRING = "pairwise_string"
    """The pairwise string evaluator, which predicts the preferred prediction from
    between two models."""
    SCORE_STRING = "score_string"
    """The scored string evaluator, which gives a score between 1 and 10 
    to a prediction."""
    LABELED_PAIRWISE_STRING = "labeled_pairwise_string"
    """The labeled pairwise string evaluator, which predicts the preferred prediction
    from between two models based on a ground truth reference label."""
    LABELED_SCORE_STRING = "labeled_score_string"
    """The labeled scored string evaluator, which gives a score between 1 and 10
    to a prediction based on a ground truth reference label."""
    AGENT_TRAJECTORY = "trajectory"
    """The agent trajectory evaluator, which grades the agent's intermediate steps."""
    CRITERIA = "criteria"
    """The criteria evaluator, which evaluates a model based on a
    custom set of criteria without any reference labels."""
    LABELED_CRITERIA = "labeled_criteria"
    """The labeled criteria evaluator, which evaluates a model based on a
    custom set of criteria, with a reference label."""
    STRING_DISTANCE = "string_distance"
    """Compare predictions to a reference answer using string edit distances."""
    EXACT_MATCH = "exact_match"
    """Compare predictions to a reference answer using exact matching."""
    REGEX_MATCH = "regex_match"
    """Compare predictions to a reference answer using regular expressions."""
    PAIRWISE_STRING_DISTANCE = "pairwise_string_distance"
    """Compare predictions based on string edit distances."""
    EMBEDDING_DISTANCE = "embedding_distance"
    """Compare a prediction to a reference label using embedding distance."""
    PAIRWISE_EMBEDDING_DISTANCE = "pairwise_embedding_distance"
    """Compare two predictions using embedding distance."""
    JSON_VALIDITY = "json_validity"
    """Check if a prediction is valid JSON."""
    JSON_EQUALITY = "json_equality"
    """Check if a prediction is equal to a reference JSON."""
    JSON_EDIT_DISTANCE = "json_edit_distance"
    """Compute the edit distance between two JSON strings after canonicalization."""
    JSON_SCHEMA_VALIDATION = "json_schema_validation"
    """Check if a prediction is valid JSON according to a JSON schema."""


class LLMEvalChain(Chain):
    """A base class for evaluators that use an LLM."""

    @classmethod
    @abstractmethod
    def from_llm(cls, llm: BaseLanguageModel, **kwargs: Any) -> LLMEvalChain:
        """Create a new evaluator from an LLM."""


class _EvalArgsMixin:
    """Mixin for checking evaluation arguments."""

    @property
    def requires_reference(self) -> bool:
        """Whether this evaluator requires a reference label."""
        return False

    @property
    def requires_input(self) -> bool:
        """Whether this evaluator requires an input string."""
        return False

    @property
    def _skip_input_warning(self) -> str:
        """Warning to show when input is ignored."""
        return f"Ignoring input in {self.__class__.__name__}, as it is not expected."

    @property
    def _skip_reference_warning(self) -> str:
        """Warning to show when reference is ignored."""
        return (
            f"Ignoring reference in {self.__class__.__name__}, as it is not expected."
        )

    def _check_evaluation_args(
        self,
        reference: Optional[str] = None,
        input: Optional[str] = None,
    ) -> None:
        """Check if the evaluation arguments are valid.

        Args:
            reference (Optional[str], optional): The reference label.
            input (Optional[str], optional): The input string.
        Raises:
            ValueError: If the evaluator requires an input string but none is provided,
                or if the evaluator requires a reference label but none is provided.
        """
        if self.requires_input and input is None:
            raise ValueError(f"{self.__class__.__name__} requires an input string.")
        elif input is not None and not self.requires_input:
            warn(self._skip_input_warning)
        if self.requires_reference and reference is None:
            raise ValueError(f"{self.__class__.__name__} requires a reference string.")
        elif reference is not None and not self.requires_reference:
            warn(self._skip_reference_warning)


class StringEvaluator(_EvalArgsMixin, ABC):
    """Grade, tag, or otherwise evaluate predictions relative to their inputs
    and/or reference labels."""

    @property
    def evaluation_name(self) -> str:
        """The name of the evaluation."""
        return self.__class__.__name__

    @property
    def requires_reference(self) -> bool:
        """Whether this evaluator requires a reference label."""
        return False

    @abstractmethod
    def _evaluate_strings(
        self,
        *,
        prediction: Union[str, Any],
        reference: Optional[Union[str, Any]] = None,
        input: Optional[Union[str, Any]] = None,
        **kwargs: Any,
    ) -> dict:
        """Evaluate Chain or LLM output, based on optional input and label.

        Args:
            prediction (str): The LLM or chain prediction to evaluate.
            reference (Optional[str], optional): The reference label to evaluate against.
            input (Optional[str], optional): The input to consider during evaluation.
            **kwargs: Additional keyword arguments, including callbacks, tags, etc.
        Returns:
            dict: The evaluation results containing the score or value.
                It is recommended that the dictionary contain the following keys:
                     - score: the score of the evaluation, if applicable.
                     - value: the string value of the evaluation, if applicable.
                     - reasoning: the reasoning for the evaluation, if applicable.
        """  # noqa: E501

    async def _aevaluate_strings(
        self,
        *,
        prediction: Union[str, Any],
        reference: Optional[Union[str, Any]] = None,
        input: Optional[Union[str, Any]] = None,
        **kwargs: Any,
    ) -> dict:
        """Asynchronously evaluate Chain or LLM output, based on optional input and label.

        Args:
            prediction (str): The LLM or chain prediction to evaluate.
            reference (Optional[str], optional): The reference label to evaluate against.
            input (Optional[str], optional): The input to consider during evaluation.
            **kwargs: Additional keyword arguments, including callbacks, tags, etc.
        Returns:
            dict: The evaluation results containing the score or value.
                It is recommended that the dictionary contain the following keys:
                     - score: the score of the evaluation, if applicable.
                     - value: the string value of the evaluation, if applicable.
                     - reasoning: the reasoning for the evaluation, if applicable.
        """  # noqa: E501
        return await asyncio.get_running_loop().run_in_executor(
            None,
            partial(
                self._evaluate_strings,
                prediction=prediction,
                reference=reference,
                input=input,
                **kwargs,
            ),
        )

    def evaluate_strings(
        self,
        *,
        prediction: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Evaluate Chain or LLM output, based on optional input and label.

        Args:
            prediction (str): The LLM or chain prediction to evaluate.
            reference (Optional[str], optional): The reference label to evaluate against.
            input (Optional[str], optional): The input to consider during evaluation.
            **kwargs: Additional keyword arguments, including callbacks, tags, etc.
        Returns:
            dict: The evaluation results containing the score or value.
        """  # noqa: E501
        self._check_evaluation_args(reference=reference, input=input)
        return self._evaluate_strings(
            prediction=prediction, reference=reference, input=input, **kwargs
        )

    async def aevaluate_strings(
        self,
        *,
        prediction: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Asynchronously evaluate Chain or LLM output, based on optional input and label.

        Args:
            prediction (str): The LLM or chain prediction to evaluate.
            reference (Optional[str], optional): The reference label to evaluate against.
            input (Optional[str], optional): The input to consider during evaluation.
            **kwargs: Additional keyword arguments, including callbacks, tags, etc.
        Returns:
            dict: The evaluation results containing the score or value.
        """  # noqa: E501
        self._check_evaluation_args(reference=reference, input=input)
        return await self._aevaluate_strings(
            prediction=prediction, reference=reference, input=input, **kwargs
        )


class PairwiseStringEvaluator(_EvalArgsMixin, ABC):
    """Compare the output of two models (or two outputs of the same model)."""

    @abstractmethod
    def _evaluate_string_pairs(
        self,
        *,
        prediction: str,
        prediction_b: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Evaluate the output string pairs.

        Args:
            prediction (str): The output string from the first model.
            prediction_b (str): The output string from the second model.
            reference (Optional[str], optional): The expected output / reference string.
            input (Optional[str], optional): The input string.
            **kwargs: Additional keyword arguments, such as callbacks and optional reference strings.
        Returns:
            dict: A dictionary containing the preference, scores, and/or other information.
        """  # noqa: E501

    async def _aevaluate_string_pairs(
        self,
        *,
        prediction: str,
        prediction_b: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Asynchronously evaluate the output string pairs.

        Args:
            prediction (str): The output string from the first model.
            prediction_b (str): The output string from the second model.
            reference (Optional[str], optional): The expected output / reference string.
            input (Optional[str], optional): The input string.
            **kwargs: Additional keyword arguments, such as callbacks and optional reference strings.
        Returns:
            dict: A dictionary containing the preference, scores, and/or other information.
        """  # noqa: E501
        return await asyncio.get_running_loop().run_in_executor(
            None,
            partial(
                self._evaluate_string_pairs,
                prediction=prediction,
                prediction_b=prediction_b,
                reference=reference,
                input=input,
                **kwargs,
            ),
        )

    def evaluate_string_pairs(
        self,
        *,
        prediction: str,
        prediction_b: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Evaluate the output string pairs.

        Args:
            prediction (str): The output string from the first model.
            prediction_b (str): The output string from the second model.
            reference (Optional[str], optional): The expected output / reference string.
            input (Optional[str], optional): The input string.
            **kwargs: Additional keyword arguments, such as callbacks and optional reference strings.
        Returns:
            dict: A dictionary containing the preference, scores, and/or other information.
        """  # noqa: E501
        self._check_evaluation_args(reference=reference, input=input)
        return self._evaluate_string_pairs(
            prediction=prediction,
            prediction_b=prediction_b,
            reference=reference,
            input=input,
            **kwargs,
        )

    async def aevaluate_string_pairs(
        self,
        *,
        prediction: str,
        prediction_b: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Asynchronously evaluate the output string pairs.

        Args:
            prediction (str): The output string from the first model.
            prediction_b (str): The output string from the second model.
            reference (Optional[str], optional): The expected output / reference string.
            input (Optional[str], optional): The input string.
            **kwargs: Additional keyword arguments, such as callbacks and optional reference strings.
        Returns:
            dict: A dictionary containing the preference, scores, and/or other information.
        """  # noqa: E501
        self._check_evaluation_args(reference=reference, input=input)
        return await self._aevaluate_string_pairs(
            prediction=prediction,
            prediction_b=prediction_b,
            reference=reference,
            input=input,
            **kwargs,
        )


class AgentTrajectoryEvaluator(_EvalArgsMixin, ABC):
    """Interface for evaluating agent trajectories."""

    @property
    def requires_input(self) -> bool:
        """Whether this evaluator requires an input string."""
        return True

    @abstractmethod
    def _evaluate_agent_trajectory(
        self,
        *,
        prediction: str,
        agent_trajectory: Sequence[Tuple[AgentAction, str]],
        input: str,
        reference: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Evaluate a trajectory.

        Args:
            prediction (str): The final predicted response.
            agent_trajectory (List[Tuple[AgentAction, str]]):
                The intermediate steps forming the agent trajectory.
            input (str): The input to the agent.
            reference (Optional[str]): The reference answer.

        Returns:
            dict: The evaluation result.
        """

    async def _aevaluate_agent_trajectory(
        self,
        *,
        prediction: str,
        agent_trajectory: Sequence[Tuple[AgentAction, str]],
        input: str,
        reference: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Asynchronously evaluate a trajectory.

        Args:
            prediction (str): The final predicted response.
            agent_trajectory (List[Tuple[AgentAction, str]]):
                The intermediate steps forming the agent trajectory.
            input (str): The input to the agent.
            reference (Optional[str]): The reference answer.

        Returns:
            dict: The evaluation result.
        """
        return await asyncio.get_running_loop().run_in_executor(
            None,
            partial(
                self._evaluate_agent_trajectory,
                prediction=prediction,
                agent_trajectory=agent_trajectory,
                reference=reference,
                input=input,
                **kwargs,
            ),
        )

    def evaluate_agent_trajectory(
        self,
        *,
        prediction: str,
        agent_trajectory: Sequence[Tuple[AgentAction, str]],
        input: str,
        reference: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Evaluate a trajectory.

        Args:
            prediction (str): The final predicted response.
            agent_trajectory (List[Tuple[AgentAction, str]]):
                The intermediate steps forming the agent trajectory.
            input (str): The input to the agent.
            reference (Optional[str]): The reference answer.

        Returns:
            dict: The evaluation result.
        """
        self._check_evaluation_args(reference=reference, input=input)
        return self._evaluate_agent_trajectory(
            prediction=prediction,
            input=input,
            agent_trajectory=agent_trajectory,
            reference=reference,
            **kwargs,
        )

    async def aevaluate_agent_trajectory(
        self,
        *,
        prediction: str,
        agent_trajectory: Sequence[Tuple[AgentAction, str]],
        input: str,
        reference: Optional[str] = None,
        **kwargs: Any,
    ) -> dict:
        """Asynchronously evaluate a trajectory.

        Args:
            prediction (str): The final predicted response.
            agent_trajectory (List[Tuple[AgentAction, str]]):
                The intermediate steps forming the agent trajectory.
            input (str): The input to the agent.
            reference (Optional[str]): The reference answer.

        Returns:
            dict: The evaluation result.
        """
        self._check_evaluation_args(reference=reference, input=input)
        return await self._aevaluate_agent_trajectory(
            prediction=prediction,
            input=input,
            agent_trajectory=agent_trajectory,
            reference=reference,
            **kwargs,
        )