Spaces:
Runtime error
Runtime error
File size: 18,439 Bytes
129cd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
"""Interfaces to be implemented by general evaluators."""
from __future__ import annotations
import asyncio
import logging
from abc import ABC, abstractmethod
from enum import Enum
from functools import partial
from typing import Any, Optional, Sequence, Tuple, Union
from warnings import warn
from langchain_core.agents import AgentAction
from langchain_core.language_models import BaseLanguageModel
from langchain.chains.base import Chain
logger = logging.getLogger(__name__)
class EvaluatorType(str, Enum):
"""The types of the evaluators."""
QA = "qa"
"""Question answering evaluator, which grades answers to questions
directly using an LLM."""
COT_QA = "cot_qa"
"""Chain of thought question answering evaluator, which grades
answers to questions using
chain of thought 'reasoning'."""
CONTEXT_QA = "context_qa"
"""Question answering evaluator that incorporates 'context' in the response."""
PAIRWISE_STRING = "pairwise_string"
"""The pairwise string evaluator, which predicts the preferred prediction from
between two models."""
SCORE_STRING = "score_string"
"""The scored string evaluator, which gives a score between 1 and 10
to a prediction."""
LABELED_PAIRWISE_STRING = "labeled_pairwise_string"
"""The labeled pairwise string evaluator, which predicts the preferred prediction
from between two models based on a ground truth reference label."""
LABELED_SCORE_STRING = "labeled_score_string"
"""The labeled scored string evaluator, which gives a score between 1 and 10
to a prediction based on a ground truth reference label."""
AGENT_TRAJECTORY = "trajectory"
"""The agent trajectory evaluator, which grades the agent's intermediate steps."""
CRITERIA = "criteria"
"""The criteria evaluator, which evaluates a model based on a
custom set of criteria without any reference labels."""
LABELED_CRITERIA = "labeled_criteria"
"""The labeled criteria evaluator, which evaluates a model based on a
custom set of criteria, with a reference label."""
STRING_DISTANCE = "string_distance"
"""Compare predictions to a reference answer using string edit distances."""
EXACT_MATCH = "exact_match"
"""Compare predictions to a reference answer using exact matching."""
REGEX_MATCH = "regex_match"
"""Compare predictions to a reference answer using regular expressions."""
PAIRWISE_STRING_DISTANCE = "pairwise_string_distance"
"""Compare predictions based on string edit distances."""
EMBEDDING_DISTANCE = "embedding_distance"
"""Compare a prediction to a reference label using embedding distance."""
PAIRWISE_EMBEDDING_DISTANCE = "pairwise_embedding_distance"
"""Compare two predictions using embedding distance."""
JSON_VALIDITY = "json_validity"
"""Check if a prediction is valid JSON."""
JSON_EQUALITY = "json_equality"
"""Check if a prediction is equal to a reference JSON."""
JSON_EDIT_DISTANCE = "json_edit_distance"
"""Compute the edit distance between two JSON strings after canonicalization."""
JSON_SCHEMA_VALIDATION = "json_schema_validation"
"""Check if a prediction is valid JSON according to a JSON schema."""
class LLMEvalChain(Chain):
"""A base class for evaluators that use an LLM."""
@classmethod
@abstractmethod
def from_llm(cls, llm: BaseLanguageModel, **kwargs: Any) -> LLMEvalChain:
"""Create a new evaluator from an LLM."""
class _EvalArgsMixin:
"""Mixin for checking evaluation arguments."""
@property
def requires_reference(self) -> bool:
"""Whether this evaluator requires a reference label."""
return False
@property
def requires_input(self) -> bool:
"""Whether this evaluator requires an input string."""
return False
@property
def _skip_input_warning(self) -> str:
"""Warning to show when input is ignored."""
return f"Ignoring input in {self.__class__.__name__}, as it is not expected."
@property
def _skip_reference_warning(self) -> str:
"""Warning to show when reference is ignored."""
return (
f"Ignoring reference in {self.__class__.__name__}, as it is not expected."
)
def _check_evaluation_args(
self,
reference: Optional[str] = None,
input: Optional[str] = None,
) -> None:
"""Check if the evaluation arguments are valid.
Args:
reference (Optional[str], optional): The reference label.
input (Optional[str], optional): The input string.
Raises:
ValueError: If the evaluator requires an input string but none is provided,
or if the evaluator requires a reference label but none is provided.
"""
if self.requires_input and input is None:
raise ValueError(f"{self.__class__.__name__} requires an input string.")
elif input is not None and not self.requires_input:
warn(self._skip_input_warning)
if self.requires_reference and reference is None:
raise ValueError(f"{self.__class__.__name__} requires a reference string.")
elif reference is not None and not self.requires_reference:
warn(self._skip_reference_warning)
class StringEvaluator(_EvalArgsMixin, ABC):
"""Grade, tag, or otherwise evaluate predictions relative to their inputs
and/or reference labels."""
@property
def evaluation_name(self) -> str:
"""The name of the evaluation."""
return self.__class__.__name__
@property
def requires_reference(self) -> bool:
"""Whether this evaluator requires a reference label."""
return False
@abstractmethod
def _evaluate_strings(
self,
*,
prediction: Union[str, Any],
reference: Optional[Union[str, Any]] = None,
input: Optional[Union[str, Any]] = None,
**kwargs: Any,
) -> dict:
"""Evaluate Chain or LLM output, based on optional input and label.
Args:
prediction (str): The LLM or chain prediction to evaluate.
reference (Optional[str], optional): The reference label to evaluate against.
input (Optional[str], optional): The input to consider during evaluation.
**kwargs: Additional keyword arguments, including callbacks, tags, etc.
Returns:
dict: The evaluation results containing the score or value.
It is recommended that the dictionary contain the following keys:
- score: the score of the evaluation, if applicable.
- value: the string value of the evaluation, if applicable.
- reasoning: the reasoning for the evaluation, if applicable.
""" # noqa: E501
async def _aevaluate_strings(
self,
*,
prediction: Union[str, Any],
reference: Optional[Union[str, Any]] = None,
input: Optional[Union[str, Any]] = None,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate Chain or LLM output, based on optional input and label.
Args:
prediction (str): The LLM or chain prediction to evaluate.
reference (Optional[str], optional): The reference label to evaluate against.
input (Optional[str], optional): The input to consider during evaluation.
**kwargs: Additional keyword arguments, including callbacks, tags, etc.
Returns:
dict: The evaluation results containing the score or value.
It is recommended that the dictionary contain the following keys:
- score: the score of the evaluation, if applicable.
- value: the string value of the evaluation, if applicable.
- reasoning: the reasoning for the evaluation, if applicable.
""" # noqa: E501
return await asyncio.get_running_loop().run_in_executor(
None,
partial(
self._evaluate_strings,
prediction=prediction,
reference=reference,
input=input,
**kwargs,
),
)
def evaluate_strings(
self,
*,
prediction: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Evaluate Chain or LLM output, based on optional input and label.
Args:
prediction (str): The LLM or chain prediction to evaluate.
reference (Optional[str], optional): The reference label to evaluate against.
input (Optional[str], optional): The input to consider during evaluation.
**kwargs: Additional keyword arguments, including callbacks, tags, etc.
Returns:
dict: The evaluation results containing the score or value.
""" # noqa: E501
self._check_evaluation_args(reference=reference, input=input)
return self._evaluate_strings(
prediction=prediction, reference=reference, input=input, **kwargs
)
async def aevaluate_strings(
self,
*,
prediction: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate Chain or LLM output, based on optional input and label.
Args:
prediction (str): The LLM or chain prediction to evaluate.
reference (Optional[str], optional): The reference label to evaluate against.
input (Optional[str], optional): The input to consider during evaluation.
**kwargs: Additional keyword arguments, including callbacks, tags, etc.
Returns:
dict: The evaluation results containing the score or value.
""" # noqa: E501
self._check_evaluation_args(reference=reference, input=input)
return await self._aevaluate_strings(
prediction=prediction, reference=reference, input=input, **kwargs
)
class PairwiseStringEvaluator(_EvalArgsMixin, ABC):
"""Compare the output of two models (or two outputs of the same model)."""
@abstractmethod
def _evaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Evaluate the output string pairs.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
reference (Optional[str], optional): The expected output / reference string.
input (Optional[str], optional): The input string.
**kwargs: Additional keyword arguments, such as callbacks and optional reference strings.
Returns:
dict: A dictionary containing the preference, scores, and/or other information.
""" # noqa: E501
async def _aevaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate the output string pairs.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
reference (Optional[str], optional): The expected output / reference string.
input (Optional[str], optional): The input string.
**kwargs: Additional keyword arguments, such as callbacks and optional reference strings.
Returns:
dict: A dictionary containing the preference, scores, and/or other information.
""" # noqa: E501
return await asyncio.get_running_loop().run_in_executor(
None,
partial(
self._evaluate_string_pairs,
prediction=prediction,
prediction_b=prediction_b,
reference=reference,
input=input,
**kwargs,
),
)
def evaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Evaluate the output string pairs.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
reference (Optional[str], optional): The expected output / reference string.
input (Optional[str], optional): The input string.
**kwargs: Additional keyword arguments, such as callbacks and optional reference strings.
Returns:
dict: A dictionary containing the preference, scores, and/or other information.
""" # noqa: E501
self._check_evaluation_args(reference=reference, input=input)
return self._evaluate_string_pairs(
prediction=prediction,
prediction_b=prediction_b,
reference=reference,
input=input,
**kwargs,
)
async def aevaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate the output string pairs.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
reference (Optional[str], optional): The expected output / reference string.
input (Optional[str], optional): The input string.
**kwargs: Additional keyword arguments, such as callbacks and optional reference strings.
Returns:
dict: A dictionary containing the preference, scores, and/or other information.
""" # noqa: E501
self._check_evaluation_args(reference=reference, input=input)
return await self._aevaluate_string_pairs(
prediction=prediction,
prediction_b=prediction_b,
reference=reference,
input=input,
**kwargs,
)
class AgentTrajectoryEvaluator(_EvalArgsMixin, ABC):
"""Interface for evaluating agent trajectories."""
@property
def requires_input(self) -> bool:
"""Whether this evaluator requires an input string."""
return True
@abstractmethod
def _evaluate_agent_trajectory(
self,
*,
prediction: str,
agent_trajectory: Sequence[Tuple[AgentAction, str]],
input: str,
reference: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Evaluate a trajectory.
Args:
prediction (str): The final predicted response.
agent_trajectory (List[Tuple[AgentAction, str]]):
The intermediate steps forming the agent trajectory.
input (str): The input to the agent.
reference (Optional[str]): The reference answer.
Returns:
dict: The evaluation result.
"""
async def _aevaluate_agent_trajectory(
self,
*,
prediction: str,
agent_trajectory: Sequence[Tuple[AgentAction, str]],
input: str,
reference: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate a trajectory.
Args:
prediction (str): The final predicted response.
agent_trajectory (List[Tuple[AgentAction, str]]):
The intermediate steps forming the agent trajectory.
input (str): The input to the agent.
reference (Optional[str]): The reference answer.
Returns:
dict: The evaluation result.
"""
return await asyncio.get_running_loop().run_in_executor(
None,
partial(
self._evaluate_agent_trajectory,
prediction=prediction,
agent_trajectory=agent_trajectory,
reference=reference,
input=input,
**kwargs,
),
)
def evaluate_agent_trajectory(
self,
*,
prediction: str,
agent_trajectory: Sequence[Tuple[AgentAction, str]],
input: str,
reference: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Evaluate a trajectory.
Args:
prediction (str): The final predicted response.
agent_trajectory (List[Tuple[AgentAction, str]]):
The intermediate steps forming the agent trajectory.
input (str): The input to the agent.
reference (Optional[str]): The reference answer.
Returns:
dict: The evaluation result.
"""
self._check_evaluation_args(reference=reference, input=input)
return self._evaluate_agent_trajectory(
prediction=prediction,
input=input,
agent_trajectory=agent_trajectory,
reference=reference,
**kwargs,
)
async def aevaluate_agent_trajectory(
self,
*,
prediction: str,
agent_trajectory: Sequence[Tuple[AgentAction, str]],
input: str,
reference: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate a trajectory.
Args:
prediction (str): The final predicted response.
agent_trajectory (List[Tuple[AgentAction, str]]):
The intermediate steps forming the agent trajectory.
input (str): The input to the agent.
reference (Optional[str]): The reference answer.
Returns:
dict: The evaluation result.
"""
self._check_evaluation_args(reference=reference, input=input)
return await self._aevaluate_agent_trajectory(
prediction=prediction,
input=input,
agent_trajectory=agent_trajectory,
reference=reference,
**kwargs,
)
|