File size: 10,646 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""LLM Chains for evaluating question answering."""
from __future__ import annotations

import re
import string
from typing import Any, List, Optional, Sequence, Tuple

from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import PromptTemplate
from langchain_core.pydantic_v1 import Extra

from langchain.callbacks.manager import Callbacks
from langchain.chains.llm import LLMChain
from langchain.evaluation.qa.eval_prompt import CONTEXT_PROMPT, COT_PROMPT, PROMPT
from langchain.evaluation.schema import LLMEvalChain, StringEvaluator
from langchain.schema import RUN_KEY


def _get_score(text: str) -> Optional[Tuple[str, int]]:
    match = re.search(r"grade:\s*(correct|incorrect)", text.strip(), re.IGNORECASE)
    if match:
        if match.group(1).upper() == "CORRECT":
            return "CORRECT", 1
        elif match.group(1).upper() == "INCORRECT":
            return "INCORRECT", 0
    try:
        first_word = (
            text.strip().split()[0].translate(str.maketrans("", "", string.punctuation))
        )
        if first_word.upper() == "CORRECT":
            return "CORRECT", 1
        elif first_word.upper() == "INCORRECT":
            return "INCORRECT", 0
        last_word = (
            text.strip()
            .split()[-1]
            .translate(str.maketrans("", "", string.punctuation))
        )
        if last_word.upper() == "CORRECT":
            return "CORRECT", 1
        elif last_word.upper() == "INCORRECT":
            return "INCORRECT", 0
    except IndexError:
        pass
    return None


def _parse_string_eval_output(text: str) -> dict:
    """Parse the output text.

    Args:
        text (str): The output text to parse.

    Returns:
        Any: The parsed output.
    """
    reasoning = text.strip()
    parsed_scores = _get_score(reasoning)
    if parsed_scores is None:
        value, score = None, None
    else:
        value, score = parsed_scores
    return {
        "reasoning": reasoning,
        "value": value,
        "score": score,
    }


class QAEvalChain(LLMChain, StringEvaluator, LLMEvalChain):
    """LLM Chain for evaluating question answering."""

    output_key: str = "results"  #: :meta private:

    class Config:
        """Configuration for the QAEvalChain."""

        extra = Extra.ignore

    @property
    def evaluation_name(self) -> str:
        return "correctness"

    @property
    def requires_reference(self) -> bool:
        return True

    @property
    def requires_input(self) -> bool:
        return True

    @classmethod
    def from_llm(
        cls,
        llm: BaseLanguageModel,
        prompt: Optional[PromptTemplate] = None,
        **kwargs: Any,
    ) -> QAEvalChain:
        """Load QA Eval Chain from LLM.

        Args:
            llm (BaseLanguageModel): the base language model to use.

            prompt (PromptTemplate): A prompt template containing the input_variables:
            'input', 'answer' and 'result' that will be used as the prompt
            for evaluation.
            Defaults to PROMPT.

            **kwargs: additional keyword arguments.

        Returns:
            QAEvalChain: the loaded QA eval chain.
        """
        prompt = prompt or PROMPT
        expected_input_vars = {"query", "answer", "result"}
        if expected_input_vars != set(prompt.input_variables):
            raise ValueError(
                f"Input variables should be {expected_input_vars}, "
                f"but got {prompt.input_variables}"
            )
        return cls(llm=llm, prompt=prompt, **kwargs)

    def evaluate(
        self,
        examples: Sequence[dict],
        predictions: Sequence[dict],
        question_key: str = "query",
        answer_key: str = "answer",
        prediction_key: str = "result",
        *,
        callbacks: Callbacks = None,
    ) -> List[dict]:
        """Evaluate question answering examples and predictions."""
        inputs = [
            {
                "query": example[question_key],
                "answer": example[answer_key],
                "result": predictions[i][prediction_key],
            }
            for i, example in enumerate(examples)
        ]

        return self.apply(inputs, callbacks=callbacks)

    def _prepare_output(self, result: dict) -> dict:
        parsed_result = _parse_string_eval_output(result[self.output_key])
        if RUN_KEY in result:
            parsed_result[RUN_KEY] = result[RUN_KEY]
        return parsed_result

    def _evaluate_strings(
        self,
        *,
        prediction: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        callbacks: Callbacks = None,
        include_run_info: bool = False,
        **kwargs: Any,
    ) -> dict:
        """Evaluate Chain or LLM output, based on optional input and label.

        Args:
            prediction (str): the LLM or chain prediction to evaluate.
            reference (Optional[str], optional): the reference label
                to evaluate against.
            input (Optional[str], optional): the input to consider during evaluation
            callbacks (Callbacks, optional): the callbacks to use for tracing.
            include_run_info (bool, optional): whether to include run info in the
                returned results.
            **kwargs: additional keyword arguments, including callbacks, tags, etc.
        Returns:
            dict: The evaluation results containing the score or value.
        """
        result = self(
            {
                "query": input,
                "answer": reference,
                "result": prediction,
            },
            callbacks=callbacks,
            include_run_info=include_run_info,
        )
        return self._prepare_output(result)

    async def _aevaluate_strings(
        self,
        *,
        prediction: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        callbacks: Callbacks = None,
        include_run_info: bool = False,
        **kwargs: Any,
    ) -> dict:
        result = await self.acall(
            inputs={"query": input, "answer": reference, "result": prediction},
            callbacks=callbacks,
            include_run_info=include_run_info,
        )
        return self._prepare_output(result)


class ContextQAEvalChain(LLMChain, StringEvaluator, LLMEvalChain):
    """LLM Chain for evaluating QA w/o GT based on context"""

    @property
    def requires_reference(self) -> bool:
        """Whether the chain requires a reference string."""
        return True

    @property
    def requires_input(self) -> bool:
        """Whether the chain requires an input string."""
        return True

    class Config:
        """Configuration for the QAEvalChain."""

        extra = Extra.ignore

    @classmethod
    def _validate_input_vars(cls, prompt: PromptTemplate) -> None:
        expected_input_vars = {"query", "context", "result"}
        if expected_input_vars != set(prompt.input_variables):
            raise ValueError(
                f"Input variables should be {expected_input_vars}, "
                f"but got {prompt.input_variables}"
            )

    @property
    def evaluation_name(self) -> str:
        return "Contextual Accuracy"

    @classmethod
    def from_llm(
        cls,
        llm: BaseLanguageModel,
        prompt: Optional[PromptTemplate] = None,
        **kwargs: Any,
    ) -> ContextQAEvalChain:
        """Load QA Eval Chain from LLM.

        Args:
            llm (BaseLanguageModel): the base language model to use.

            prompt (PromptTemplate): A prompt template containing the input_variables:
            'query', 'context' and 'result' that will be used as the prompt
            for evaluation.
            Defaults to PROMPT.

            **kwargs: additional keyword arguments.

        Returns:
            ContextQAEvalChain: the loaded QA eval chain.
        """
        prompt = prompt or CONTEXT_PROMPT
        cls._validate_input_vars(prompt)
        return cls(llm=llm, prompt=prompt, **kwargs)

    def evaluate(
        self,
        examples: List[dict],
        predictions: List[dict],
        question_key: str = "query",
        context_key: str = "context",
        prediction_key: str = "result",
        *,
        callbacks: Callbacks = None,
    ) -> List[dict]:
        """Evaluate question answering examples and predictions."""
        inputs = [
            {
                "query": example[question_key],
                "context": example[context_key],
                "result": predictions[i][prediction_key],
            }
            for i, example in enumerate(examples)
        ]

        return self.apply(inputs, callbacks=callbacks)

    def _prepare_output(self, result: dict) -> dict:
        parsed_result = _parse_string_eval_output(result[self.output_key])
        if RUN_KEY in result:
            parsed_result[RUN_KEY] = result[RUN_KEY]
        return parsed_result

    def _evaluate_strings(
        self,
        *,
        prediction: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        callbacks: Callbacks = None,
        include_run_info: bool = False,
        **kwargs: Any,
    ) -> dict:
        result = self(
            {
                "query": input,
                "context": reference,
                "result": prediction,
            },
            callbacks=callbacks,
            include_run_info=include_run_info,
        )
        return self._prepare_output(result)

    async def _aevaluate_strings(
        self,
        *,
        prediction: str,
        reference: Optional[str] = None,
        input: Optional[str] = None,
        callbacks: Callbacks = None,
        include_run_info: bool = False,
        **kwargs: Any,
    ) -> dict:
        result = await self.acall(
            inputs={"query": input, "context": reference, "result": prediction},
            callbacks=callbacks,
            include_run_info=include_run_info,
        )
        return self._prepare_output(result)


class CotQAEvalChain(ContextQAEvalChain):
    """LLM Chain for evaluating QA using chain of thought reasoning."""

    @property
    def evaluation_name(self) -> str:
        return "COT Contextual Accuracy"

    @classmethod
    def from_llm(
        cls,
        llm: BaseLanguageModel,
        prompt: Optional[PromptTemplate] = None,
        **kwargs: Any,
    ) -> CotQAEvalChain:
        """Load QA Eval Chain from LLM."""
        prompt = prompt or COT_PROMPT
        cls._validate_input_vars(prompt)
        return cls(llm=llm, prompt=prompt, **kwargs)